Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Introduction ligands

This chapter encompasses the largest and currently the most active area in inorganic chemistry in a random sample of several recent issues of journals devoted to inorganic chemistry, 70% of the articles dealt with studies which could fit into the title of this chapter. [Pg.273]

Coordination and organometallic chemistry are often regarded as distinct tribal divisions in the discipline of inorganic chemistry. However, the historical reasons behind the distinction are no longer applicable the term coordination compound may have outlived its usefulness, and the term organometallic compound is often interpreted rather liberally. Accordingly, the two will be taken together as far as transition element chemistry is concerned. [Pg.273]

Notwithstanding the previous sentence, all potential ligands possess one or more pairs of electrons which are available for donation to a central atom by one mechanism or another. A systematic survey of all known and potential ligands would be a formidable undertaking. In this section we will look at a number of representative ligands which illustrate the various modes of bonding to the central atom. [Pg.274]

The ammonia molecule owes its capacity as a ligand to the lone-pair orbital on the N atom. In the language of VB theory (which is of limited value in d block and f block chemistry), the bond simply involves the o overlap of the lone-pair orbital with an empty hybrid orbital of the central atom. In MO language, a complex ion M(NH3) + has m filled a bonding MOs. There is no reason to suspect that any other orbitals on the NH3 molecule are involved in its bonding to a central atom in a complex. [Pg.274]

Each of the two N atoms in NH2CH2CH2NH2 has the same function as the N atom of an ammonia molecule with respect to complex formation. However, en can take up two positions in the coordination sphere of the same central atom, e.g.  [Pg.274]


Ru3 and OS3 clusters Introduction, ligand types and simple neutral, anionic and... [Pg.1715]

Recently Desimoni et used the same bis(oxazoline) ligand in the magnesium(II) catalysed Diels-Alder reaction of the N-acyloxazolidinone depicted in Scheme 3.4. In dichloromethane a modest preference was observed for the formation of the S-enantiomer. Interestingly, upon addition of two equivalents of water, the R-enantiomer was obtained in excess. This remarkable observation was interpreted in terms of a change from tetrahedral to octahedral coordination upon the introduction of the strongly coordinating water molecules. [Pg.81]

The coupling of the enol triflate 703 with the vinylstannane 704[397] has been applied to the synthesis of glycinoeclepin[576]. The introduction of a (Z)-propenyl group in the / -lactam derivative 705 proceeds by use of tri-2-furylphosphine[577]. However, later a smooth reaction to give the propenyl-iactam in 82% yield was achieved simply by treating with Pd(OAc)2 in NMP or CH2CI2 for 3-5 min without addition of LiCI and the phosphine ligand[578]. [Pg.232]

The utility of complexation titrations improved following the introduction by Schwarzenbach, in 1945, of aminocarboxylic acids as multidentate ligands capable of forming stable 1 1 complexes with metal ions. The most widely used of these new ligands was ethylenediaminetetraacetic acid, EDTA, which forms strong 1 1 complexes with many metal ions. The first use of EDTA as a titrant occurred in... [Pg.314]

The introduction of tritium into molecules is most commonly achieved by reductive methods, including catalytic reduction by tritium gas, PH2], of olefins, catalytic reductive replacement of halogen (Cl, Br, or I) by H2, and metal pH] hydride reduction of carbonyl compounds, eg, ketones (qv) and some esters, to tritium-labeled alcohols (5). The use of tritium-labeled building blocks, eg, pH] methyl iodide and pH]-acetic anhydride, is an alternative route to the preparation of high specific activity, tritium-labeled compounds. The use of these techniques for the synthesis of radiolabeled receptor ligands, ie, dmgs and dmg analogues, has been described ia detail ia the Hterature (6,7). [Pg.438]

It is well known, that in aqueous solutions the water molecules, which are in the inner coordination sphere of the complex, quench the lanthanide (Ln) luminescence in result of vibrations of the OH-groups (OH-oscillators). The use of D O instead of H O, the freezing of solution as well as the introduction of a second ligand to obtain a mixed-ligand complex leads to either partial or complete elimination of the H O influence. The same effect may be achieved by water molecules replacement from the inner and outer coordination sphere at the addition of organic solvents or when the molecule of Ln complex is introduced into the micelle of the surfactant. [Pg.82]

A mechanism for this reaction has been proposed [75], The first key intermediate in the reaction is the copper(I) acetylide 42. The additional ligand may be solvent or H2O. The acetylene moiety in 42 is activated for a 1,3-dipolar cycloaddition with the nitrone to give intermediate 43, with introduction of chirality in the product. A possible route to ris/traws-41 might be via intermediate 44. Finally, the cis isomer is isomerized into the thermally more stable trans-41. It should be mentioned that the mechanism outlined in Scheme 6.32 was originally proposed for a racemic version of the reaction to which water was added. [Pg.235]

It may be concluded from die different examples sliown here tiiat die enantio-selective copper-catalyzed allylic substitution reaction needs ftirdier improvemetiL High enantioselectivities can be obtained if diirality is present in tiie leaving group of die substrate, but widi external diiral ligands, enantioselectivities in excess of 9096 ee have only been obtained in one system, limited to die introduction of die sterically hindered neopeatyl group. [Pg.282]

The introduction of another organic cation function, guanidinium group, into macrocyclic structures such as (IV)-(VI) produces ligands which also display affinity for phosphate anions58). [Pg.127]

While the signal-to-noise ratio can be improved with increasing the amount of membrane used in binding studies, too much membrane can lead to depletion of radioligand with a concomitant introduction of errors in the estimates of ligand affinity. [Pg.74]

This book is a highly readable introduction to the reactions of coordinated ligands. Bridging the gap between the traditional fields, this text presents the basic concepts of ligand reactivity as well as many synthetic applications of these reactions. [Pg.799]

Macromolecules bearing reactive groups in the repeat units along their chains are capable of multiple interaction with the matrix. As early as 1973, Wilchek prepared Sepharose-based supports chemically modified by chemisorbed polylysine and polyvinylamine [41]. The leakage of dyes covalently bonded to these supports was reduced remarkably as compared to non-modified Sepharose activated by cyanogen bromide. Thus, stable and high capacity affinity adsorbents could be prepared by the introduction of macromolecular spacers between a matrix and a biospecific ligand. [Pg.148]

In the more successful reagents, the ligands have been selected in such a way that the metal center remains nonstereogenic, this has been achieved mainly by application of chiral diols with C2 symmetry or by introduction of two of the same alkoxy residues. [Pg.426]

The NO ligand can be supplied by nitric oxide itself, but there are many other sources such as nitrite, nitrate or nitric acid, nitrosonium salts or N-methyl-7V-nitrosotoluene-p-sulphonamide (MNTS). The introduction of a nitrosyl group into a ruthenium complex is an ever-present possibility. [Pg.43]

As with rhodium (and cobalt), introduction of five ammonia molecules is relatively straightforward, but the sixth substitution is difficult, requiring more forcing conditions. One versatile route involves the formation of the pentammine triflate complex ion [Ir(NH3)5(03SCF3)]2+, where the labile triflate group is readily replaced by water, then by a range of anionic ligands [148]. [Pg.146]

The reaction of alkoxyarylcarbene complexes with alkynes mainly affords Dotz benzannulated [3C+2S+1C0] cycloadducts. However, uncommon reaction pathways of some alkoxyarylcarbene complexes in their reaction with alkynes leading to indene derivatives in a formal [3C+2S] cycloaddition process have been reported. For example, the reaction of methoxy(2,6-dimethylphenyl)chromium carbene complex with 1,2-diphenylacetylene at 100 °C gives rise to an unusual indene derivative where a sigmatropic 1,5-methyl shift is observed [60]. Moreover, a related (4-hydroxy-2,6-dimethylphenyl)carbene complex reacts in benzene at 100 °C with 3-hexyne to produce an indene derivative. However, the expected Dotz cycloadduct is obtained when the solvent is changed to acetonitrile [61] (Scheme 19). Also, Dotz et al. have shown that the introduction of an isocyanide ligand into the coordination sphere of the metal induces the preferential formation of indene derivatives [62]. [Pg.75]


See other pages where Introduction ligands is mentioned: [Pg.273]    [Pg.275]    [Pg.277]    [Pg.279]    [Pg.281]    [Pg.273]    [Pg.275]    [Pg.277]    [Pg.279]    [Pg.281]    [Pg.597]    [Pg.176]    [Pg.456]    [Pg.459]    [Pg.174]    [Pg.241]    [Pg.447]    [Pg.228]    [Pg.322]    [Pg.380]    [Pg.352]    [Pg.126]    [Pg.220]    [Pg.13]    [Pg.127]    [Pg.134]    [Pg.335]    [Pg.386]    [Pg.258]    [Pg.8]    [Pg.169]    [Pg.153]    [Pg.185]    [Pg.100]    [Pg.114]    [Pg.223]    [Pg.228]    [Pg.329]   


SEARCH



© 2024 chempedia.info