Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Introduction and First Basic Concepts

This chapter concentrates on the results of DS study of the structure, dynamics, and macroscopic behavior of complex materials. First, we present an introduction to the basic concepts of dielectric polarization in static and time-dependent fields, before the dielectric spectroscopy technique itself is reviewed for both frequency and time domains. This part has three sections, namely, broadband dielectric spectroscopy, time-domain dielectric spectroscopy, and a section where different aspects of data treatment and fitting routines are discussed in detail. Then, some examples of dielectric responses observed in various disordered materials are presented. Finally, we will consider the experimental evidence of non-Debye dielectric responses in several complex disordered systems such as microemulsions, porous glasses, porous silicon, H-bonding liquids, aqueous solutions of polymers, and composite materials. [Pg.3]

For one thing, the first part of the book presents a modest introduction to the basic considerations that applied ethics most often employs, namely, rights, justice, and utility. The concept of rights, which are an individual s entitlements to those liberties, choices, opportunities, and items having serious consequence for human life, is precisely what privacy depends on for protection. As well, the concept of rights significantly bears upon questions of ownership, that is, the right to property. [Pg.718]

In this first chapter, we will outline the scope of this book on the kinetics of chemical processes in the solid state. They are often different from the kinetics of processes in fluids because of structural constraints. After a brief historical introduction, typical situations of non-equilibrium crystals will be described. These will illustrate some basic concepts and our approach to understanding solid state kinetics. [Pg.2]

The book provides systematic and detailed descriptions of the numerous approaches to chiral resolution. The first chapter is an introduction to basic concepts of molecular chirality and liquid chromatography. Chapters 2 through 9 discuss the chiral resolution of various classes of chiral stationary phases. Chapter 10 deals with chiral resolution using chiral mobile phase additives. These discussions elaborate the types, structures, and properties of the chiral phases,... [Pg.9]

This book provides an introduction to the colloid and interface science of three of the most common types of colloidal dispersion emulsions, foams, and suspensions. The initial emphasis covers basic concepts important to the understanding of most kinds of colloidal dispersions, not just emulsions, foams, and suspensions, and is aimed at providing the necessary framework for understanding the applications. The treatment is integrated for each major physical property class the principles of colloid and interface science common to each dispersion type are presented first, followed as needed by separate treatments of features unique to emulsions, foams, or suspensions. The second half of the book provides examples of the applications of colloid science, again in the context of emulsions, foams, and suspensions, and includes attention to practical processes and problems in various industrial settings. [Pg.462]

This chapter gives an introduction to the subject of chemical reaction engineering. The first part introduces basic definitions and concepts of chemical reaction engineering and chemical kinetics and the importance of mass and heat transfer to the overall chemical reaction rate. In the second part, the basic concepts of chemical reactor design are covered, including steady-state models and their use in the development... [Pg.21]

In Chapter 1 we explain the motivation and basic concepts of electrodeposition from ionic liquids. In Chapter 2 an introduction to the principles of ionic liquids synthesis is provided as background for those who may be using these materials for the first time. While most of the ionic liquids discussed in this book are available from commercial sources it is important that the reader is aware of the synthetic methods so that impurity issues are clearly understood. Nonetheless, since a comprehensive summary is beyond the scope of this book the reader is referred for more details to the second edition of Ionic Liquids in Synthesis, edited by Peter Wasserscheid and Tom Welton. Chapter 3 summarizes the physical properties of ionic liquids, and in Chapter 4 selected electrodeposition results are presented. Chapter 4 also highlights some of the troublesome aspects of ionic liquid use. One might expect that with a decomposition potential down to -3 V vs. NHE all available elements could be deposited unfortunately, the situation is not as simple as that and the deposition of tantalum is discussed as an example of the issues. In Chapters 5 to 7 the electrodeposition of alloys is reviewed, together with the deposition of semiconductors and conducting polymers. The deposition of conducting polymers... [Pg.397]

Chapter 7, therefore, deals with model-based design and optimization of a chromatographic plant, where the already selected chromatographic system and concepts are applied. First, basic principles of the optimization of chromatographic processes will be explained. These include the introduction of the commonly used objective functions and the degrees of freedom. To reduce the complexity of the optimization and to ease the scale-up of a plant, this chapter will also emphasize the application of dimensionless parameters and degrees of freedom respectively. Examples for the... [Pg.7]

We first introduce the basic concepts in physics of flow of simple and multiphase fluid in networks of microchannels. We then go on to demonstrate the phenomenology of the flow of droplets through the simplest network - a single loop of channels - and then provide examples of experiments on more complicated systems. The third part of the lecture introduces the subject of modeling of the dynamics of flow of units of resistance through networks of conductors, and show the results of these efforts and their correspondence to microfluidic flows. Finally, we provide an introduction to the subject of automation of flows of droplets in microchannels and demonstrate an example of the droplet-on-demand system constmcted in our laboratory. [Pg.186]

Membrane-based reactive separation (otherwise also known as membrane reactor) processes, which constitute the subject matter of this book, are a special class of the broader field of membrane-based separation processes. In this introduction we will first provide a general and recent overview on membranes and membrane-based separation processes. The goal is to familiarize those of our readers, who are novice in the membrane field, with some of the basic concepts and definitions. A more complete description on this topic, including various aspects of membrane synthesis can be obtained from a number of comprehensive books and reviews that have already been published in this area [1.1, 1.2, 1.3,... [Pg.261]

The book offers the reader in its first part a general and as detailed as necessary introduction into the basic principles and methods, starting with sampling, sample storage and sample treatment. These steps are of utmost importance for each analytical procedure. This is followed by the description of the potential of a number of modern trace analytical methods, i.e. atomic absorption and emission spectrometry, voltammetry, neutron activation and isotope dilution mass spectrometry. The latter method is an important reference method within a general concept for quality control and the generation of reference materials which are an absolute must in this context. [Pg.1]


See other pages where Introduction and First Basic Concepts is mentioned: [Pg.3]    [Pg.4]    [Pg.6]    [Pg.8]    [Pg.10]    [Pg.12]    [Pg.14]    [Pg.16]    [Pg.18]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.3]    [Pg.4]    [Pg.6]    [Pg.8]    [Pg.10]    [Pg.12]    [Pg.14]    [Pg.16]    [Pg.18]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.26]    [Pg.28]    [Pg.30]    [Pg.30]    [Pg.258]    [Pg.707]    [Pg.635]    [Pg.583]    [Pg.3]    [Pg.10]    [Pg.244]    [Pg.225]    [Pg.277]    [Pg.184]    [Pg.510]    [Pg.257]    [Pg.652]    [Pg.2]    [Pg.290]    [Pg.268]    [Pg.290]    [Pg.70]    [Pg.1]    [Pg.82]    [Pg.526]    [Pg.242]    [Pg.234]   


SEARCH



Basic concepts

Basicity, concept

Concept introduction

© 2024 chempedia.info