Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermolecular forces defined

The one-dimensional potential curves depicted in Figures 1.1-1.3 represent the dissociation of diatomic molecules for which the potential V(Rab) depends only on the internuclear distance between atoms A and B. However, if one or both constituents are molecules, V is a multidimensional object, a so-called potential energy surface which depends on several (at least three) nuclear coordinates denoted by the vector Q = (Ql,Q2,Q3,---) (Margenau and Kestner 1969 Balint-Kurti 1974 Kuntz 1976 Schaefer III 1979 Kuntz 1979 Truhlar 1981 Salem 1982 Murrell et al. 1984 Hirst 1985 Levine and Bernstein 1987 ch.4 Hirst 1990 ch.3). The intramolecular and intermolecular forces, defined by... [Pg.19]

Lipophilicity is a molecular property expressing the relative affinity of solutes for an aqueous phase and an organic, water-immiscible solvent. As such, lipophilicity encodes most of the intermolecular forces that can take place between a solute and a solvent, and represents the affinity of a molecule for a lipophilic environment. This parameter is commonly measured by its distribution behavior in a biphasic system, described by the partition coefficient of the species X, P. Thermodynamically, is defined as a constant relating the activity of a solute in two immiscible phases at equilibrium [111,112]. By convention, P is given with the organic phase as numerator, so that a positive value for log P reflects a preference for the lipid phase ... [Pg.730]

As we have explained in the previous two chapters, polymers are long chains of repeat units connected by bonds. One consequence of these long chains is the high number of intermolecular forces present between polymer molecules. The character of the bonds in a polymer will partially define the strength of the intermolecular interactions between the molecules. [Pg.75]

When describing the effect of an external force, we must first define the force itself. A lay person s definition of a force is the amount of effort to get the desired effect. As scientists, we need a more precise definition of force. With a precise definition we can understand and quantify the effect of an applied force on a polymeric material. The mathematical definition of force is the work (which is a form of energy) required to move an object over some distance. Another way to define a force is in terms of the acceleration it creates when applied to some object of a mass m. In our everyday experiences, the first explanation is a simple idea to relate to. When we push a stalled car we exert a force on it. We could easily quantify the force from the weight of the car, the slope of the hill it is sitting on, and how far we must push it. Once we begin to talk about forces in polymer systems, the ideas become a bit more complicated. For example, the force required to open a bag of candy is defined by the work required to deform the bag until it ruptures by overcoming the intermolecular forces which hold the plastic together. [Pg.121]

Chapter 6. The outer contour in this map is for a density of 0.001 au, which has been found to represent fairly well the outer surface of a free molecule in the gas phase, giving a value of 190 pm for the radius in the direction opposite the bond and 215 pm in the perpendicular direction. In the solid state molecules are squashed together by intermolecular forces giving smaller van der Waals radii. Figure 5.2b shows a diagram of the packing of the Cl2 molecules in one layer of the solid state structure of chlorine. From the intermolecular distances in the direction opposite the bond direction and perpendicular to this direction we can derive values of 157 pm and 171 pm for the two radii of a chlorine atom in the CI2 molecule in the solid state. These values are much smaller than the values for the free molecule in the gas phase. Clearly the Cl2 molecule is substantially compressed in the solid state. This example show clearly that the van der Waals of an atom radius is not a well defined concept because, as we have stated, atoms in molecules are not spherical and are also compressible. [Pg.115]

Although the trajectory and convective diffusion techniques are conceptually simple, certain mechanisms, in particular, the exact role of the intermolecular force between the particle and the electrode remains an element of debate. Most of these problems arise because continuum models about short-range interactions break down at very short distances, where other factors, much less defined come into play. A complete understanding of the coelectrodeposition process requires a synergy between theoretical models and thorough experimental work. [Pg.220]

In a second approach of the reactivity, one fragment A is represented by its electronic density and the other, B, by some reactivity probe of A. In the usual approach, which permits to define chemical hardness, softness, Fukui functions, etc., the probe is simply a change in the total number of electrons of A. [5,6,8] More realistic probes are an electrostatic potential cf>, a pseudopotential (as in Equation 24.102), or an electric field E. For instance, let us consider a homogeneous electric field E applied to a fragment A. How does this field modify the intermolecular forces in A Again, the Hellman-Feynman theorem [22,23] tells us that for an instantaneous nuclear configuration, the force on each atom changes by... [Pg.334]

According to the definition of the A-B bond dissociation enthalpy, reactants and products in reaction 5.1 must be in the gas phase under standard conditions. That is to say that those species are in the ideal gas phase, implying that inter-molecular interactions do not exist. DH (A-B) refers, therefore, to the isolated molecule AB, and it does not contain any contribution from intermolecular forces. Though this is obviously the correct way of defining the energetics of any bond, there are many literature examples where bond dissociation enthalpies have been reported in solution. [Pg.60]

In order to leam more about the nature of the intermolecular forces we will start with partitioning of the total molecular energy, AE, into individual contri butions, which are as close as possible to those we defined in intermolecular perturbation theory. Attempts to split AE into suitable parts were undertaken independently by several groups 83-85>. The most detailed scheme of energy partitioning within the framework of MO theory was proposed by Morokuma 85> and his definitions are discussed here ). This analysis starts from antisymmetrized wave functions of the isolated molecules, a and 3, as well as from the complete Hamiltonian of the interacting complex AB. Four different approximative wave functions are used to describe the whole system ... [Pg.26]

The cohesive energy coh of a substance in a condensed state is defined as the increase in internal energy AU per mole of substance if all the intermolecular forces are eliminated. [Pg.320]

The thermal motion of molecules of a given substance in a solvent medium causes dispersion and migration. If dispersion takes place by intermolecular forces acting within a gas, fluid, or solid, molecular diffusion takes place. In a turbulent medium, the migration of matter within it is defined as turbulent diffusion or eddy diffusion. Diffusional flux J is the product of linear concentration gradient dCldX multiphed by a proportionality factor generally defined as diffusion coefficient (D) (see section 4.11) ... [Pg.608]

Lipophilicity is a molecular property experimentally determined as the logarithm of the partition coefficient (log P) of a solute between two non-miscible solvent phases, typically n-octanol and water. An experimental log P is valid for only a single chemical species, while a mixture of chemical species is defined by a distribution, log D. Because log P is a ratio of two concentrations at saturation, it is essentially the net result of all intermolecular forces between a solute and the two phases into which it partitions (1) and is generally pH-dependent. According to Testa et al. (1) lipophilicity can be represented (Fig. 1) as the difference between the hydrophobicity, which accounts for hydrophobic interactions, and dispersion forces and polarity, which account for hydrogen bonds, orientation, and induction forces ... [Pg.216]

Molecular electronic dipole moments, pi, and dipole polarizabilities, a, are important in determining the energy, geometry, and intermolecular forces of molecules, and are often related to biological activity. Classically, the pKa electric dipole moment pic can be expressed as a sum of discrete charges multiplied by the position vector r from the origin to the ith charge. Quantum mechanically, the permanent electric dipole moment of a molecule in electronic state Wei is defined simply as an expectation value ... [Pg.369]

To do this we assign an energy of interaction vvn to a pair of solvent molecules and w22 to a pair of polymer segments. The latter arises from the intermolecular forces between segments and not from the covalent bonds between them. In the same fashion, we define wl2 to be the energy of the solvent-segment interaction. [Pg.127]

If the area of an insoluble monolayer is isothermally reduced still further, the compressibility eventually becomes very low. Because of the low compressibility, the states observed at these low values of a are called condensed states. In general, the isotherm is essentially linear, although it may display a well-defined change in slope as tt is increased, as shown in Figure 7.6. As menlioned above, the (relatively) more expanded of these two linear portions is the liquid-condensed state LC, and the less expanded is the solid state S. It is clear from the low compressibility of these states that both the LC and S states are held together by strong intermolecular forces so as to be relatively independent of the film pressure. [Pg.317]

The basic issue is at a higher level of generality than that of the particular mechanical assumptions (Newtonian, quantum-theoretical, etc.) concerning the system. For simplicity of exposition, we deal with the classical model of N similar molecules in a closed vessel "K, intermolecular forces being conservative, and container forces having a force-function usually involving the time. Such a system is Hamiltonian, and we assume that the potentials are such that its Hamiltonian function is bounded below. The statistics of the system are conveyed by a probability density function 3F defined over the phase space QN of our Hamiltonian system. Its time evolution is completely determined by Liouville s equation... [Pg.38]

Remember that one of the principal properties used to define an ideal solution is that the intermolecular forces of attraction and repulsion are the same between unlike as between like molecules. This property does not exist in real solutions. Molecular behavior in a real solution depends on the types and sizes of the molecules which are interacting. [Pg.395]

In this chapter, intermolecular forces are viewed as complications and nuisances it is the molecule per se that is of interest. Therefore, unless explicitly noted to the contrary, any species of interest in this chapter is to be assumed in the (ideal) gas phase. Most organic compounds are naturally liquids or solids under the thermochemically desired conditions, much less as found by the synthetically or mechanistically inclined chemist. Corrections are naturally made by using enthalpies of vaporization (v) and of sublimation ), defined by equations la and lb ... [Pg.224]

To quantitate total lipids, defined as the sum of the free and bound lipids, both polar and nonpolar, acid hydrolysis may be necessary to release the bound lipids by dissociating lipid-starch and lipid-protein intermolecular forces. The resultant lipids may then be removed and measured however, the nonlipid components so obtained are not usable for further analysis. Removal of some of the polar lipids may hinder the use of the extracted material for further analysis. [Pg.431]

One way of exploring intermolecular forces is to measure the compression factor, Z, which is defined as... [Pg.323]

It has since then been reformulated on various occasions, e.g., Supramolecular chemistry may be defined as chemistry beyond the molecule , bearing on the organized entities of higher complexity that result from the association of two or more chemical species held together by intermolecular forces [1.7]. [Pg.5]

In many solutions strong interactions may occur between like molecules to form polymeric species, or between unlike molecules to form new compounds or complexes. Such new species are formed in solution or are present in the pure substance and usually cannot be separated from the solution. Basically, thermodynamics is not concerned with detailed knowledge of the species present in a system indeed, it is sufficient as well as necessary to define the state of a system in terms of the mole numbers of the components and the two other required variables. We can make use of the expressions for the chemical potentials in terms of the components. In so doing all deviations from ideal behavior, whether the deviations are caused by the formation of new species or by the intermolecular forces operating between the molecules, are included in the excess chemical potentials. However, additional information concerning the formation of new species and the equilibrium constants involved may be obtained on the basis of certain assumptions when the experimental data are treated in terms of species. The fact that the data may be explained thermodynamically in terms of species is no proof of their existence. Extra-thermodynamic studies are required for the proof. [Pg.312]


See other pages where Intermolecular forces defined is mentioned: [Pg.131]    [Pg.131]    [Pg.271]    [Pg.693]    [Pg.220]    [Pg.138]    [Pg.206]    [Pg.6]    [Pg.199]    [Pg.302]    [Pg.250]    [Pg.233]    [Pg.162]    [Pg.66]    [Pg.41]    [Pg.50]    [Pg.204]    [Pg.265]    [Pg.700]    [Pg.347]    [Pg.3]    [Pg.4]    [Pg.6]    [Pg.122]    [Pg.220]   
See also in sourсe #XX -- [ Pg.24 ]

See also in sourсe #XX -- [ Pg.331 , Pg.415 ]

See also in sourсe #XX -- [ Pg.8 , Pg.348 ]

See also in sourсe #XX -- [ Pg.237 ]

See also in sourсe #XX -- [ Pg.8 , Pg.348 ]

See also in sourсe #XX -- [ Pg.411 ]

See also in sourсe #XX -- [ Pg.351 ]

See also in sourсe #XX -- [ Pg.462 ]

See also in sourсe #XX -- [ Pg.494 ]




SEARCH



© 2024 chempedia.info