Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermediates compared with transition state

Catalysis by micelles of the hydroxide-ion catalysed hydrolysis of substrates appears to be qualitatively understood on the basis of a concentration effect of reactant on, or around, the micelle surface and need not necessarily involve a dilference in the free energies of activation in the micelle and bulk phase. That is not to say that the cationic micelles could not and do not cause electrostatic stabilisation of the transition state. The cationic micelle surface can act as an electrostatic sink for the anionic intermediate leading to its stabilisation, but a rate enhancement requires preferential stabilisation of this intermediate compared with the reactant. The small rate enhancement of the micelle catalysed reaction, about 50-fold, is equally well explained by considering that the increased concentration of reactants at the micelle surface leads to a higher observed rate. Incorporation of the reactants into a limited volume decreases the entropy loss that is associated with bringing reactants together in the transition state and this leads to an increase in the pseudo first-order rate constants in the presence of surfactant micelles. Cationic micelles of CTAB have also been shown to facilitate the alkaline hydrolysis of the cephalosporin, cephalexin (Yatsuhara el al., 1977). [Pg.227]

Let us now return to the question of solvolysis and how it relates to the stracture under stable-ion conditions. To relate the structural data to solvolysis conditions, the primary issues that must be considered are the extent of solvent participation in the transition state and the nature of solvation of the cationic intermediate. The extent of solvent participation has been probed by comparison of solvolysis characteristics in trifluoroacetic acid with the solvolysis in acetic acid. The exo endo reactivity ratio in trifluoroacetic acid is 1120 1, compared to 280 1 in acetic acid. Whereas the endo isomer shows solvent sensitivity typical of normal secondary tosylates, the exx> isomer reveals a reduced sensitivity. This indicates that the transition state for solvolysis of the exo isomer possesses a greater degree of charge dispersal, which would be consistent with a bridged structure. This fact, along with the rate enhancement of the exo isomer, indicates that the c participation commences prior to the transition state being attained, so that it can be concluded that bridging is a characteristic of the solvolysis intermediate, as well as of the stable-ion structure. ... [Pg.332]

As already mentioned, complexes of chromium(iii), cobalt(iii), rhodium(iii) and iridium(iii) are particularly inert, with substitution reactions often taking many hours or days under relatively forcing conditions. The majority of kinetic studies on the reactions of transition-metal complexes have been performed on complexes of these metal ions. This is for two reasons. Firstly, the rates of reactions are comparable to those in organic chemistry, and the techniques which have been developed for the investigation of such reactions are readily available and appropriate. The time scales of minutes to days are compatible with relatively slow spectroscopic techniques. The second reason is associated with the kinetic inertness of the products. If the products are non-labile, valuable stereochemical information about the course of the substitution reaction may be obtained. Much is known about the stereochemistry of ligand substitution reactions of cobalt(iii) complexes, from which certain inferences about the nature of the intermediates or transition states involved may be drawn. This is also the case for substitution reactions of square-planar complexes of platinum(ii), where study has led to the development of rules to predict the stereochemical course of reactions at this centre. [Pg.187]

Two reasons may be offered for the enhanced /3-deuterium isotope effect in vinyl cations as compared with carbonium ions (193). As pointed out by Noyce and Schiavelli (21), in the transition state of a vinyl cation, the isotopically substituted C—H bond is ideally suited for overlap with the developing vacant p orbital, as the dihedral angle between the empty p orbital and C—H bonds is zero in the intermediate, as shown in structure 239. Shiner and co-workers (195)... [Pg.292]

Levy (Chapter 6) has also explored the use of supercomputers to study detailed properties of biological macromolecule that are only Indirectly accessible to experiment, with particular emphasis on solvent effects and on the Interplay between computer simulations and experimental techniques such as NMR, X-ray structures, and vltratlonal spectra. The chapter by Jorgensen (Chapter 12) summarizes recent work on the kinetics of simple reactions In solutions. This kind of calculation provides examples of how simulations can address questions that are hard to address experimentally. For example Jorgensen s simulations predicted the existence of an Intermediate for the reaction of chloride Ion with methyl chloride In DMF which had not been anticipated experimentally, and they Indicate that the weaker solvation of the transition state as compared to reactants for this reaction In aqueous solution Is not due to a decrease In the number of hydrogen bonds, but rather due to a weakening of the hydrogen bonds. [Pg.8]

We hope that the preceding discussions have developed the concept of a conical intersection as being as real as many other reactive intermediates. The major difference compared with other types of reactive intermediate is that a conical intersection is really a family of structures, rather than an individual structure. However, the molecular structures corresponding to conical intersections are completely amenable to computation, even if their existence can only be inferred from experimental information. They have a well-defined geometry. Like the transition state, the crucial directions governing dynamics can be determined andX2) even if there are now two such directions rather than one. As for a transition structure, the nature of optimized geometries on the conical intersection hyperline can be determined from second derivative analysis. [Pg.412]

The effect of crystal size of these zeolites on the resulted toluene conversion can be ruled out as the crystal sizes are rather comparable, which is particularly valid for ZSM-5 vs. SSZ-35 and Beta vs. SSZ-33. The concentrations of aluminum in the framework of ZSM-5 and SSZ-35 are comparable, Si/Al = 37.5 and 39, respectively. However, the differences in toluene conversion after 15 min of time-on-stream (T-O-S) are considerable being 25 and 48.5 %, respectively. On the other hand, SSZ-35 exhibits a substantially higher concentration of strong Lewis acid sites, which can promote a higher rate of the disproportionation reaction. Two mechanisms of xylene isomerization were proposed on the literature [8] and especially the bimolecular one involving the formation of biphenyl methane intermediate was considered to operate in ZSM-5 zeolites. Molecular modeling provided the evidence that the bimolecular transition state of toluene disproportionation reaction fits in the channel intersections of ZSM-5. With respect to that formation of this transition state should be severely limited in one-dimensional (1-D) channel system of medium pore zeolites. This is in contrast to the results obtained as SSZ-35 with 1-D channels system exhibits a substantially higher... [Pg.275]


See other pages where Intermediates compared with transition state is mentioned: [Pg.164]    [Pg.106]    [Pg.218]    [Pg.493]    [Pg.804]    [Pg.14]    [Pg.164]    [Pg.164]    [Pg.9]    [Pg.414]    [Pg.301]    [Pg.19]    [Pg.5366]    [Pg.36]    [Pg.16]    [Pg.302]    [Pg.91]    [Pg.129]    [Pg.376]    [Pg.184]    [Pg.197]    [Pg.297]    [Pg.319]    [Pg.320]    [Pg.306]    [Pg.323]    [Pg.257]    [Pg.181]    [Pg.92]    [Pg.422]    [Pg.16]    [Pg.355]    [Pg.24]    [Pg.27]    [Pg.384]    [Pg.110]    [Pg.104]    [Pg.132]    [Pg.29]    [Pg.245]    [Pg.249]    [Pg.197]    [Pg.36]   
See also in sourсe #XX -- [ Pg.321 ]




SEARCH



Intermediate state

Intermediates compare

Intermediates transition state, 5, 6, 7

With intermediates

© 2024 chempedia.info