Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermediate density lipoprotein IDL

Endothelial-anchored enzyme in liver primarily responsible for hydrolysis of triglycerides and phospholipids in Intermediate Density Lipoproteins (IDL) and High Density Lipoproteins (HDL). [Pg.582]

D. The lipoproteins include chylomicrons, HDLs, intermediate-density lipoproteins (IDLs), LDLs, and VLDLs, which differ by size, density, and composition of proteins and lipids. [Pg.104]

These drugs are used for treatment of hyperlipidemia. They lower the levels of lipoproteins and lipids in blood. The plasma lipids are present in lipoproteins after combining with apoproteins. They are high density lipoproteins (HDL), low density lipoproteins (LDL), very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL). [Pg.195]

Fig. 5.2.1 The major metabolic pathways of the lipoprotein metabolism are shown. Chylomicrons (Chylo) are secreted from the intestine and are metabolized by lipoprotein lipase (LPL) before the remnants are taken up by the liver. The liver secretes very-low-density lipoproteins (VLDL) to distribute lipids to the periphery. These VLDL are hydrolyzed by LPL and hepatic lipase (HL) to result in intermediate-density lipoproteins (IDL) and low-density lipoproteins (LDL), respectively, which then is cleared from the blood by the LDL receptor (LDLR). The liver and the intestine secrete apolipoprotein AI, which forms pre-jS-high-density lipoproteins (pre-jl-HDL) in blood. These pre-/ -HDL accept phospholipids and cholesterol from hepatic and peripheral cells through the activity of the ATP binding cassette transporter Al. Subsequent cholesterol esterification by lecithinxholesterol acyltransferase (LCAT) and transfer of phospholipids by phospholipid transfer protein (PLTP) transform the nascent discoidal high-density lipoproteins (HDL disc) into a spherical particle and increase the size to HDL2. For the elimination of cholesterol from HDL, two possible pathways exist (1) direct hepatic uptake of lipids through scavenger receptor B1 (SR-BI) and HL, and (2) cholesteryl ester transfer protein (CfiTP)-mediated transfer of cholesterol-esters from HDL2 to chylomicrons, and VLDL and hepatic uptake of the lipids via the LDLR pathway... Fig. 5.2.1 The major metabolic pathways of the lipoprotein metabolism are shown. Chylomicrons (Chylo) are secreted from the intestine and are metabolized by lipoprotein lipase (LPL) before the remnants are taken up by the liver. The liver secretes very-low-density lipoproteins (VLDL) to distribute lipids to the periphery. These VLDL are hydrolyzed by LPL and hepatic lipase (HL) to result in intermediate-density lipoproteins (IDL) and low-density lipoproteins (LDL), respectively, which then is cleared from the blood by the LDL receptor (LDLR). The liver and the intestine secrete apolipoprotein AI, which forms pre-jS-high-density lipoproteins (pre-jl-HDL) in blood. These pre-/ -HDL accept phospholipids and cholesterol from hepatic and peripheral cells through the activity of the ATP binding cassette transporter Al. Subsequent cholesterol esterification by lecithinxholesterol acyltransferase (LCAT) and transfer of phospholipids by phospholipid transfer protein (PLTP) transform the nascent discoidal high-density lipoproteins (HDL disc) into a spherical particle and increase the size to HDL2. For the elimination of cholesterol from HDL, two possible pathways exist (1) direct hepatic uptake of lipids through scavenger receptor B1 (SR-BI) and HL, and (2) cholesteryl ester transfer protein (CfiTP)-mediated transfer of cholesterol-esters from HDL2 to chylomicrons, and VLDL and hepatic uptake of the lipids via the LDLR pathway...
The loss of triacylglycerol converts some VLDL to VLDL remnants (also called intermediate density lipoprotein, IDL) further removal of triacylglycerol from VLDL produces low-density lipoprotein (LDL) (Table 21-2). Very rich in cholesterol and cholesteryl esters and containing apoB-100 as their major apoli-poprotein, LDLs carry cholesterol to extrahepatic tissues that have specific plasma membrane receptors that recognize apoB-100. These receptors mediate the uptake of cholesterol and cholesteryl esters in a process described below. [Pg.823]

Production of LDL from VLDL in the plasma With these modifications, the VLDL is converted in the plasma to LDL. An intermediate-sized particle, the intermediate-density lipoprotein (IDL) or VLDL remnant, is observed during this transition. IDLs can also be taken up by cells through receptor-mediated endocytosis that uses apo E as the ligand. [Note Apolipoprotein E is normally present in three isoforms, E2, E3, and E4. Apo E2 binds poorly to receptors, and patients who are homozygotic for apo E2 are deficient in the clearance of chylomicron remants and IDLs. The individuals have familial type III hyperlipoproteinemia (familial dysbetalipoproteinemia, or broad beta disease), with hypercholesterolemia and premature atherosclerosis. Not yet understood is the fact that the E4 isoform confers increased susceptibility to late-onset Alzheimer disease.]... [Pg.229]

The small particles of plasma lipoprotein, which carry triacylglycerols, can be separated according to their buoyant densities by centrifugation. They have been classified into five groups of increasing density but smaller size as chylomicrons, very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), low density (LDL), and high density lipoproteins (HDL) (Table 21-1 and Fig. 21-2). Each lipoprotein particle contains one or more apolipoproteins (Table 21-2), whose sizes vary from the enormous 4536-residue apoB-100 to apoC-II and apoC-III, each of which contains just 79 residues73 and the 57-residue apoC-I.7b... [Pg.1181]

Between these two classes, in both size and composition, are the cholesteryl ester-rich low-density lipoproteins (LDLs), the intermediate-density lipoproteins (IDLs), and the triacylglycerol-rich very-low-density lipoproteins (VLDLs). [Pg.467]

As the lipoproteins are depleted of triacylglycerol, the particles become smaller. Some of the surface molecules (apoproteins, phospholipids) are transferred to HDL. In the rat, remnants that result from chylomicron catabolism are removed by the liver. The uptake of remnant VLDL also occurs, but much of the triacylglycerol is further degraded by lipoprotein lipase to give the intermediate-density lipoprotein (IDL). This particle is converted into LDL via the action of lipoprotein lipase and enriched in cholesteryl ester via transfer from HDL by the cholesteryl ester transfer protein. The half-life for clearance of chylomicrons from plasma of humans is 4-5 min. Patients with the inherited disease, lipoprotein lipase deficiency, clear chylomicrons from the plasma very slowly. When on a normal diet, the blood from these patients looks like tomato soup. A very-low-fat diet greatly relieves this problem. [Pg.471]

Lipoproteins are particles with hydrophobic core regions containing cholesteryl esters and triglycerides. Unesterified cholesterol, phospholipids, and apoproteins surround the core. Certain lipoproteins contain very high-molecular-weight B proteins that exist in two forms B48, which is formed in the intestine and found in chylomicrons and their remnants and B100, synthesized in liver and found in VLDL, VLDL remnants (intermediate-density lipoproteins IDL), LDL (formed from VLDL), and the Lp(a) lipoproteins. [Pg.787]

Hyperlipidemia (mainly hypercholesterolemia) is a regular part of nephrotic syndrome (K13, W6). Serum levels of cholesterol are often markedly elevated, usually above 10 mmol/L. However, in severely malnourished patients, normal or even decreased serum cholesterol level can be found. Serum levels of triacylglyc-erols fluctuate, from normal values to markedly elevated values (mainly in patients with proteinuria higher than 10 g/24 hr). There is a variable increase in plasma concentrations of very low density lipoproteins (VLDL, they correlate negatively with serum albumin level), intermediate-density lipoproteins (IDL), andLDL however, plasma concentrations of HDL are usually normal (J3). Levels of lipoprotein(a) [Lp(a)j are also increased (W4). Remission of nephrotic syndrome or decrease of proteinuria may result in the decrease of plasma concentrations of Lp(a) (G2). Concentration of free fatty acids in serum is commonly decreased because they are normally bound to albumin and albumin is lost into the urine. The activity of lecithin cholesterol acyltransferase (LCAT) is usually decreased. [Pg.197]

Lipoproteins are globular, micelle-like particles consisting of a hydrophobic core of triacylglycerols and cholesterol esters surrounded by an amphipathic coat of protein, phospholipid and cholesterol. The apolipoproteins (apoproteins) on the surface of the lipoproteins help to solubilize the lipids and target the lipoproteins to the correct tissues. There are five different types of lipoprotein, classified according to their functional and physical properties chylomicrons, very low density lipoproteins (VLDLs), intermediate density lipoproteins (IDLs), low density lipoproteins (LDLs), and high density lipoproteins (HDLs). The major function of lipoproteins is to transport triacylglycerols, cholesterol and phospholipids around the body. [Pg.339]

The size of the VLDL particle in plasma diminishes and its density increases as triglyceride is hydrolyzed by endothelial lipoprotein lipase, and the particles are thus converted to intermediate-density lipoproteins (IDL) (B32, S35). The IDL detach from the endothelium, and some are taken up by hepatic B-100, E receptors. The remaining particles in the circulation are further depleted of some cholesteryl ester (by an unknown mechanism), and most of the remaining triglyceride (probably by hepatic triglyceride lipase, in the liver sinusoids) (D5). Hie resulting LDL particles are largely composed of cholesteryl ester as the core lipid and apoB-100 as the apolipoprotein. [Pg.235]

Triacylglycerols and cholesterol are exported from the liver as nascent VLDL complexes, destined primarily to muscle and adipose tissues. The VLDL complex contains apolipoprotein B-lOO and acquires C-I, C-II, C-III and E from circulating HDL complexes. Fatty acids are released from VLDLs in the same way as chylomicrons, through the action of LPL. This action, coupled to a loss of certain apoproteins (the apo-Cs), converts VLDLs to intermediate-density lipoproteins (IDLs), also termed VLDL remnants. The apo-Cs are transferred to HDLs. The predominant remaining proteins are apo-B-100 and apo-E. Further loss of triacylglycerols converts IDLs to LDLs. [Pg.100]

These lipids are insoluble in water and are classified on the basis of their ultracentrifugal properties into chylomicrons, very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) in order of ascending density. Table 2.4 gives the classification and roles of lipoproteins. [Pg.35]

Cholesterol and triacylglycerols are transported in body fluids in the form of lipoprotein particles. Each particle consists of a core of hydrophobic lipids surrounded by a shell of more polar lipids and apoproteins. The protein components of these macromolecular aggregates have two roles they solubilize hydrophobic lipids and contain cell-targeting signals. Lipoprotein particles are classified according to increasing density (Table 26.1) chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL). Ten principal apoproteins have been isolated and characterized. They are synthesized and secreted by the liver and the intestine. [Pg.1078]

Remnant removal disease (RRD, also called remnant lipaemia, familial dysbetalipoproteinemia) (uncommon) in which there is a defect of apolipoprotein E. This is the major ligand that allows internalisation and subsequent metabolism of remnant particles derived from VLDL and chylomicrons. The consequence is accumulation of VLDL remnants called intermediate density lipoprotein (IDL) with cholesterol and triglycerides usually in the range 6-9 mmol/1. Patients experience severe macrovascular disease (as above). [Pg.522]

Fatty acids occurring as TGs in the VLDLs are derived from three sources (1) free fatty adds taken up by the liver from the bloodstream (2) TGs derived from chylomicron remnants, intermediate-density lipoproteins (IDLs), LDLs, and HDLs taken up by the liver via the process of endocytosis and f3) fatty acids synthesized de novo in the liver from carbohydrates. Note that the free fatty acids in plasma are tightly, although not covalently, associated with plasrna albumin. [Pg.337]

Hepatic lipase is involved in the metabolism of high-density lipoproteins and intermediate density lipoproteins (IDLs), converting the HDL2 fraction to HDL3 and generating LDLs from IDLs. The enzyme appears to have broad specificity it hydrolyzes tri-, di-, and mono-acylglycerols, acyl-CoA thioesters, and even phospholipids. hHL is secreted by the liver parenchymal cells and does not require any cofactors for its activity. [Pg.41]

Cholesterol and triglycerides circulate as part of lipoprotein complexes throughout the bloodstream. These complexes can be separated via ultracentrifugation into HDL, intermediate-density lipoprotein (IDL), LDL, and very-low-density lipoprotein (VLDL) fractions. In the liver, cholesterol and TG are synthesized, incorporated into VLDL, and released into the plasma for delivery to peripheral tissues. [Pg.218]

Rabbits fed 30 mg/day acarbose showed reduced levels of plasma cholesterol, intermediate-density lipoprotein (IDL) and LDL (Kritchevsky et al., 1990) sudanophilia was reduced by 23% in rabbits fed 7.5 mg/day acarbose and by 43% in rabbits fed 15 or 30 mg/day (Kritchevsky et al., 1990). The decrease in total cholesterol was shown to be a consequence of a significant reduction in LDL cholesterol. Since HDL cholesterol concentrations remained unal-... [Pg.160]


See other pages where Intermediate density lipoprotein IDL is mentioned: [Pg.841]    [Pg.647]    [Pg.176]    [Pg.156]    [Pg.130]    [Pg.1185]    [Pg.358]    [Pg.221]    [Pg.4]    [Pg.501]    [Pg.222]    [Pg.154]    [Pg.297]    [Pg.647]    [Pg.37]    [Pg.214]    [Pg.307]    [Pg.915]   
See also in sourсe #XX -- [ Pg.1181 , Pg.1186 ]




SEARCH



IDLS (

Intermediate density lipoproteins (IDL composition of, table

Intermediate-density lipoproteins

Lipoproteins density

© 2024 chempedia.info