Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfacial equilibrium, stability

In some cases, the Q ions have such a low solubility in water that virtually all remain in the organic phase. ° In such cases, the exchange of ions (equilibrium 3) takes place across the interface. Still another mechanism the interfacial mechanism) can operate where OH extracts a proton from an organic substrate. In this mechanism, the OH ions remain in the aqueous phase and the substrate in the organic phase the deprotonation takes place at the interface. Thermal stability of the quaternary ammonium salt is a problem, limiting the use of some catalysts. The trialkylacyl ammonium halide 95 is thermally stable, however, even at high reaction temperatures." The use of molten quaternary ammonium salts as ionic reaction media for substitution reactions has also been reported. " " ... [Pg.455]

The instability of these chiral monolayers may be a reflection of the relative stabilities of their bulk crystalline forms. When deposited on a clean water surface at 25°C, neither the racemic nor enantiomeric crystals of the tryptophan, tyrosine, or alanine methyl ester surfactants generate a detectable surface pressure, indicating that the most energetically favorable situation for the interfacial/crystal system is one in which the internal energy of the bulk crystal is lower than that of the film at the air-water interface. Only the racemic form of JV-stearoylserine methyl ester has a detectable equilibrium spreading pressure (2.6 0.3dyncm 1). Conversely, neither of its enantiomeric forms will spread spontaneously from the crystal at this temperature. [Pg.81]

There is a need to better understand the physical, chemical, and mechanical behaviors when modeling HE materials from fundamental theoretical principles. Among the quantities of interest in PBXs, for example, are thermodynamic stabilities, reaction kinetics, equilibrium transport coefficients, mechanical moduli, and interfacial properties between HE materials and the... [Pg.159]

The sketch in Fig. 10 shows the equilibrium of forces with an obtuse contact angle in the oil phase (6o). In this case the wetting tension, j, of the aqueous phase is positive, which means that the adhering oil droplet is pushed together by the aqueous phase. With the increase in j the tendency of an oil droplet to be cut off and removed from a solid substrate increases. Because of this, the impeding force for the removal of oil is the interfacial tension oil/water (Yq )> which should be minimized. By minimization of the interfacial tension, moreover, the requirements for emulsification and stabilization of soil in the washing and cleaning liquid will be improved. [Pg.19]

If one considers a system consisting of water (with or without added electrolyte) + oil + surfactant (with or without a cosurfactant) at equilibrium, there will most likely be present more than two phases (due to the formation of emulsion or microemulsion). The determination of the interfacial tension, Yij> between the two liquid phases is, therefore, of much importance, in order to understand the forces which stabilize these emulsions or microemulsions. The interfacial tension can be measured by using a variety of methods, as described in detail in surface chemistry text-books (1-3). If the magnitude of yij is of the order of few mN/m (=dyne/ cm), then the methods generally used are Wilhelmy plate method or the drop volume (or weight) method (1-4). However, in certain systems ultra-low (or low) interfacial tensions have been reported. Since these low values are reported to be essential in order to mo-... [Pg.329]

The YBG equation is a two point boundary value problem requiring the equilibrium liquid and vapor densities which in the canonical ensemble are uniquely defined by the number of atoms, N, volume, V, and temperature, T. If we accept the applicability of macroscopic thermodynamics to droplets of molecular dimensions, then these densities are dependent upon the interfacial contribution to the free energy, through the condition of mechanical stability, and consequently, the droplet size dependence of the surface tension must be obtained. [Pg.18]

Emulsions and foams are two other areas in which dynamic and equilibrium film properties play a considerable role. Emulsions are colloidal dispersions in which two immiscible liquids constitute the dispersed and continuous phases. Water is almost always one of the liquids, and amphipathic molecules are usually present as emulsifying agents, components that impart some degree of durability to the preparation. Although we have focused attention on the air-water surface in this chapter, amphipathic molecules behave similarly at oil-water interfaces as well. By their adsorption, such molecules lower the interfacial tension and increase the interfacial viscosity. Emulsifying agents may also be ionic compounds, in which case they impart a charge to the surface, which in turn establishes an ion atmosphere of counterions in the adjacent aqueous phase. These concepts affect the formation and stability of emulsions in various ways ... [Pg.322]

The choice between the static methods (Wilhelmy plate method and the du Noiiy ring method) should primarily be based on the properties of the system being studied, in particular, the surfactant. As mentioned in UNITD3.5, the transport of surfactant molecules from the bulk to the surface requires a finite amount of time. Since static interfacial tension measurements do not yield information about the true age of the interface, it is conceivable that the measured interfacial tension values may not correspond to equilibrium interfacial tension values (i.e., the exchange of molecules between the bulk and the interface has not yet reached full equilibrium and the interfacial tension values are therefore not static). If the surfactant used in the experiment adsorbs within a few seconds, which is the case for small-molecule surfactants, then both the Wilhelmy plate method and the du Noiiy ring method are adequate. If the adsorption of a surfactant requires more time to reach full equilibrium, then the measurement should not be conducted until the interfacial tension values have stabilized. Since interfacial tension values are continuously displayed with... [Pg.631]

Mullins and Sekerka (88, 89) analyzed the stability of a planar solidification interface to small disturbances by a rigorous solution of the equations for species and heat transport in melt and crystal and the constraint of equilibrium thermodynamics at the interface. For two-dimensional solidification samples in a constant-temperature gradient, the results predict the onset of a sinusoidal interfacial instability with a wavelength (X) corresponding to the disturbance that is just marginally stable as either G is decreased... [Pg.81]

The interfacial tension is a key property for describing the formation of emulsions and microemulsions (Aveyard et al., 1990), including those in supercritical fluids (da Rocha et al., 1999), as shown in Figure 8.3, where the v-axis represents a variety of formulation variables. A minimum in y is observed at the phase inversion point where the system is balanced with respect to the partitioning of the surfactant between the phases. Here, a middle-phase emulsion is present in equilibrium with excess C02-rich (top) and aqueous-rich (bottom) phases. Upon changing any of the formulation variables away from this point—for example, the hydrophilie/C02-philic balance (HCB) in the surfactant structure—the surfactant will migrate toward one of the phases. This phase usually becomes the external phase, according to the Bancroft rule. For example, a surfactant with a low HCB, such as PFPE COO NH4+ (2500 g/mol), favors the upper C02 phase and forms w/c microemulsions with an excess water phase. Likewise, a shift in formulation variable to the left would drive the surfactant toward water to form a c/w emulsion. Studies of y versus HCB for block copolymers of propylene oxide, and ethylene oxide, and polydimethylsiloxane (PDMS) and ethylene oxide, have been used to understand microemulsion and emulsion formation, curvature, and stability (da Rocha et al., 1999). [Pg.137]

It can be considered from the scheme that one has to distinguish between the foam kinetics, i.e. the rate of generation of foam under well defined conditions (air input and mechanical treatment) and the stability and lifetime of a foam once generated. The foam kinetics is also sometimes termed foamability in the literature. These quantities can be related to interfacial parameters such as dynamic surface tension, i.e. the non-equilibrium surface tension of a newly generated surface, interfacial rheology, dynamic surface elasticity and interfacial potential. In the case of the presence of oily droplets (e.g. an antifoam, a... [Pg.78]

The use of copolymers as surfactants is widespread in macromolecular chemistry in order to compatibilize immiscible blends. These additives are sometimes named surfactants , interfacial agents or more usually compatibi-lizers . Their effect on improving different properties is observed interfacial tension and domain size decrease, while there is an increase in adhesion between the two phases and a post-mixing morphology stabilization (coalescence prevention). The aim of the addition of such copolymers is to obtain thermodynamically stable blends, but the influence of kinetic parameters has to be kept in mind as long as they have to be mastered to reach the equilibrium. Introducing a copolymer can be achieved either by addition of a pre-synthesized copolymer or by in-situ surfactant synthesis via a fitted re-... [Pg.118]

Gel emulsions were applied successfully for the first time in aldol additions of DHAP to phenylacetaldehyde and benzyloxyacetaldehyde as model aldehydes catalyzed by RAMA [24]. The first interesting observation was that the stability of RAMA in water-in-oil gel emulsions improved by 25-fold compared to that in dimethylformamide/water l/4v/v co-solvent mixture. The reported experimental data concluded that both the highest enzymatic activities and equilibrium yields were observed in water-in-oil gel emulsion systems with the lowest water-oil interfacial tension attained with the most hydrophobic oil component (i.e. tetradecane, hexadecane, and squalane). [Pg.301]

The stability of inverse micelles has been treated by Eicke (8,9) and by Muller (10) for nonaqueous systems, while Adamson (1) and later Levine (11) calculated the electric field gradient in an inverse micelle for a solution in equilibrium with an aqueous solution. Ruckenstein (5) later gave a more complete treatment of the stability of such systems taking both enthalpic (Van der Waals (VdW) interparticle potential, the first component of the interfacial free energy and the interparticle contribution of the repulsion energy from the compression of the diffuse part of the electric double layer) and entropic contributions into consideration. His calculations also were performed for the equilibrium between two liquid solutions—one aqueous, the other hydrocarbon. [Pg.214]

In Fig. 9c, the effects of different surface tension values on the equilibrium are examined. By decreasing the interfacial tension, the Laplace term becomes less significant than the contribution given by the entropy of mixing, and therefore ripening is decreased and stability is enhanced. Theoretically, in a system with zero surface tension at the oil/water interface, the total monomer chemical potential is given solely by the entropic terms, and it is always stable. [Pg.169]


See other pages where Interfacial equilibrium, stability is mentioned: [Pg.79]    [Pg.64]    [Pg.580]    [Pg.249]    [Pg.504]    [Pg.634]    [Pg.394]    [Pg.111]    [Pg.59]    [Pg.322]    [Pg.131]    [Pg.6]    [Pg.79]    [Pg.124]    [Pg.26]    [Pg.194]    [Pg.313]    [Pg.293]    [Pg.55]    [Pg.267]    [Pg.322]    [Pg.298]    [Pg.620]    [Pg.30]    [Pg.68]    [Pg.194]    [Pg.32]    [Pg.79]    [Pg.249]    [Pg.313]    [Pg.38]    [Pg.85]    [Pg.346]    [Pg.171]    [Pg.220]   
See also in sourсe #XX -- [ Pg.573 ]




SEARCH



Interfacial stability

Interfacial stabilization

© 2024 chempedia.info