Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface electric double layer

Kosmulski, M., Oxide/electrolyte interface Electric double layer in mixed solvent systems. Colloids Surf. A, 95, 81,1995. [Pg.912]

A droplet may become charged by other mechanisms such as ionization, preferential adsorption of ions at the interface (electric double layer), and droplet disintegration. [Pg.685]

IHP) (the Helmholtz condenser formula is used in connection with it), located at the surface of the layer of Stem adsorbed ions, and an outer Helmholtz plane (OHP), located on the plane of centers of the next layer of ions marking the beginning of the diffuse layer. These planes, marked IHP and OHP in Fig. V-3 are merely planes of average electrical property the actual local potentials, if they could be measured, must vary wildly between locations where there is an adsorbed ion and places where only water resides on the surface. For liquid surfaces, discussed in Section V-7C, the interface will not be smooth due to thermal waves (Section IV-3). Sweeney and co-workers applied gradient theory (see Chapter III) to model the electric double layer and interfacial tension of a hydrocarbon-aqueous electrolyte interface [27]. [Pg.179]

This interface is critically important in many applications, as well as in biological systems. For example, the movement of pollutants tln-ough the enviromnent involves a series of chemical reactions of aqueous groundwater solutions with mineral surfaces. Although the liquid-solid interface has been studied for many years, it is only recently that the tools have been developed for interrogating this interface at the atomic level. This interface is particularly complex, as the interactions of ions dissolved in solution with a surface are affected not only by the surface structure, but also by the solution chemistry and by the effects of the electrical double layer [31]. It has been found, for example, that some surface reconstructions present in UHV persist under solution, while others do not. [Pg.314]

The well-known DLVO theory of coUoid stabiUty (10) attributes the state of flocculation to the balance between the van der Waals attractive forces and the repulsive electric double-layer forces at the Hquid—soHd interface. The potential at the double layer, called the zeta potential, is measured indirectly by electrophoretic mobiUty or streaming potential. The bridging flocculation by which polymer molecules are adsorbed on more than one particle results from charge effects, van der Waals forces, or hydrogen bonding (see Colloids). [Pg.318]

When two conducting phases come into contact with each other, a redistribution of charge occurs as a result of any electron energy level difference between the phases. If the two phases are metals, electrons flow from one metal to the other until the electron levels equiUbrate. When an electrode, ie, electronic conductor, is immersed in an electrolyte, ie, ionic conductor, an electrical double layer forms at the electrode—solution interface resulting from the unequal tendency for distribution of electrical charges in the two phases. Because overall electrical neutrality must be maintained, this separation of charge between the electrode and solution gives rise to a potential difference between the two phases, equal to that needed to ensure equiUbrium. [Pg.510]

On the electrode side of the double layer the excess charges are concentrated in the plane of the surface of the electronic conductor. On the electrolyte side of the double layer the charge distribution is quite complex. The potential drop occurs over several atomic dimensions and depends on the specific reactivity and atomic stmcture of the electrode surface and the electrolyte composition. The electrical double layer strongly influences the rate and pathway of electrode reactions. The reader is referred to several excellent discussions of the electrical double layer at the electrode—solution interface (26-28). [Pg.510]

Pig. 3. Representation of the electrical double layer at a metal electrode—solution interface for the case where anions occupy the inner Helmholtz plane... [Pg.510]

Electrical double layers are not confined to the interface between conducting phases. SoHd particles of active mass, or of conductive additives of... [Pg.510]

Fig. 7. (a) Simple battery circuit diagram where represents the capacitance of the electrical double layer at the electrode—solution interface, W depicts the Warburg impedance for diffusion processes, and R is internal resistance and (b) the corresponding Argand diagram of the behavior of impedance with frequency, for an idealized battery system, where the characteristic behavior of A, ohmic B, activation and C, diffusion or concentration (Warburg... [Pg.514]

Two kinds of barriers are important for two-phase emulsions the electric double layer and steric repulsion from adsorbed polymers. An ionic surfactant adsorbed at the interface of an oil droplet in water orients the polar group toward the water. The counterions of the surfactant form a diffuse cloud reaching out into the continuous phase, the electric double layer. When the counterions start overlapping at the approach of two droplets, a repulsion force is experienced. The repulsion from the electric double layer is famous because it played a decisive role in the theory for colloidal stabiUty that is called DLVO, after its originators Derjaguin, Landau, Vervey, and Overbeek (14,15). The theory provided substantial progress in the understanding of colloidal stabihty, and its treatment dominated the colloid science Hterature for several decades. [Pg.199]

M. R. Philpott, J. N. Glosli. Molecular dynamics simulation of interfacial electrochemical processes electric double layer screening. In G. Jerkiewicz, M. P. Soriaga, K. Uosaki, A. Wieckowski, eds. Solid Liquid Electrochemical Interfaces, Vol. 656 of ACS Symposium Series. Washington ACS, 1997, Chap. 2, pp. 13-30. [Pg.381]

In some cases, e.g., the Hg/NaF q interface, Q is charge dependent but concentration independent. Then it is said that there is no specific ionic adsorption. In order to interpret the charge dependence of Q a standard explanation consists in assuming that Q is related to the existence of a solvent monolayer in contact with the wall [16]. From a theoretical point of view this monolayer is postulated as a subsystem coupled with the metal and the solution via electrostatic and non-electrostatic interactions. The specific shape of Q versus a results from the competition between these interactions and the interactions between solvent molecules in the mono-layer. This description of the electrical double layer has been revisited by... [Pg.804]

A. Watts, T. J. VanderNoot. The electrical double layer at hquid-hquid interfaces. In A. G. Volkov, D. W. Deamer, eds. Liquid-Liquid Interfaces. Theory and Methods. Boca Raton CRC Press, 1996, pp. 77-102. [Pg.847]

The potential difference across the electric double layer A. This cannot be determined in absolute terms but must be defined with reference to another charged interface, i.e. a reference electrode. In the case of a corroding metal the potential is the corrosion potential which arises from the mutual polarisation of the anodic and cathodic reactions constituting the overall corrosion reaction see Section 1.4). [Pg.1005]

Previous considerations have shown that the interface between two conducting phases is characterised by an unequal distribution of electrical charge which gives rise to an electrical double layer and to an electrical potential diflFerence. This can be illustrated by considering the transport of charge (metal ions or electrons) that occurs immediately an isolated metal is immersed in a solution of its cations ... [Pg.1249]

Activation Overpotential that part of an overpotential (polarisation) that exists across the electrical double layer at an electrode/solution interface and thus directly influences the rate of the electrode process by altering its activation energy. [Pg.1363]

The electrical double layer is the array of charged particles and/or oriented dipoles that exists at every material interface. In electrochemistry, such a layer reflects the ionic zones formed in the solution to compensate for the excess of charge on the electrode (qe). A positively charged electrode thus attracts a layer of negative ions (and vice versa). Since the interface must be neutral. qe + qs = 0 (where qs is the charge of the ions in the nearby solution). Accordingly, such a counterlayer is made... [Pg.18]

For an ideally polarizable electrode, q has a unique value for a given set of conditions.1 For a nonpolarizable electrode, q does not have a unique value. It depends on the choice of the set of chemical potentials as independent variables1 and does not coincide with the physical charge residing at the interface. This can be easily understood if one considers that q measures the electric charge that must be supplied to the electrode as its surface area is increased by a unit at a constant potential." Clearly, with a nonpolarizable interface, only part of the charge exchanged between the phases remains localized at the interface to form the electrical double layer. [Pg.4]


See other pages where Interface electric double layer is mentioned: [Pg.132]    [Pg.992]    [Pg.177]    [Pg.228]    [Pg.346]    [Pg.388]    [Pg.132]    [Pg.992]    [Pg.177]    [Pg.228]    [Pg.346]    [Pg.388]    [Pg.149]    [Pg.150]    [Pg.2766]    [Pg.513]    [Pg.771]    [Pg.44]    [Pg.45]    [Pg.428]    [Pg.511]    [Pg.533]    [Pg.178]    [Pg.104]    [Pg.119]    [Pg.134]    [Pg.109]    [Pg.17]    [Pg.800]    [Pg.800]    [Pg.833]    [Pg.812]    [Pg.1004]    [Pg.1244]    [Pg.1249]    [Pg.1250]    [Pg.32]    [Pg.36]   
See also in sourсe #XX -- [ Pg.111 , Pg.112 ]




SEARCH



Electric Double-Layer at Interface of Electrode and Electrolyte Solution

Electric double layer

Electric double layer at interfaces

Electrical double layer

Electrical double layer at the oxide solution interface

Electrical double layer interface

Electrical double layer interface

Electrical double layer mineral/water interfaces

Electrical/electrically double-layer

Interface double layer

Interface electrical

Interface layer

Interface mineral/water, electric double layer

© 2024 chempedia.info