Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface core

Our aim in this section is to show how it is possible to calculate the defect concentrations in botmdary layers as a function of the control parameters temperature, component activity and doping content, the local coordinate and the materials parameters of both bulk and interface core. Thus, we are going to extend our previous defect chemical analysis to boundary layers, whereby we will, in general, consider a mixed conductor with low defect concentrations [244]. [Pg.219]

This also applies with respect to bond lengths (i.e. the absence of marked elastic effects is assumed [245]). In hard materials such elastic effects can be of longer range [245]. The actual stationary interface core exhibiting a different structure is allowed to be of finite thickness. With respect to the spatial dependence see also Ref. [246]. [Pg.219]

Proteins often have the same high-affinity isotherms as do synthetic polymers and are also slow to equilibrate, due to many contacts with the surface. Proteins, however, have the additional complication that they can partially or completely unfold at the solid-liquid interface to expose their hydrophobic core units to a hydrophobic surface... [Pg.404]

Flimpsel F J, McFeely F R, Morar J F, Taleb-lbrahimi A and Yarmoff J A 1990 Core level spectroscopy at silicon surfaces and interfaces Proc. Enrico Fermi School on Photoemission and Adsorption Spectroscopy and Interfaces with Synchrotron Radiation vo course CVIII, eds M Campagna and R Rose (Amsterdam Elsevier) p 203... [Pg.316]

The requiiements for scientific software development have continually increased. Besides the algorithmic core functionality, nowadays there is often a demand for a graphical user interface. In addition to the increasing importance of this visible component, which may still be seen as just an add-on, the software development itself has to fulfill stronger demands on software engineering requirements, such as maintainability and recoverability. [Pg.627]

At the point where capillary condensation commences in the finest mesopores, the walls of the whole mesopore system are already coated with an adsorbed film of area A, say. The quantity A comprises the area of the core walls and is less than the specific surface A (unless the pores happen to be parallel-sided slits). When capillary condensation takes place within a pore, the film-gas interface in that pore is destroyed, and when the pore system is completely filled with capillary condensate (e.g. at F in Fig. 3.1) the whole of the film-gas interface will have disappeared. It should therefore be possible to determine the area by suitable treatment of the adsorption data for the region of the isotherm where capillary condensation is occurring. [Pg.169]

Figure 4a represents interfacial polymerisation encapsulation processes in which shell formation occurs at the core material—continuous phase interface due to reactants in each phase diffusing and rapidly reacting there to produce a capsule shell (10,11). The continuous phase normally contains a dispersing agent in order to faciUtate formation of the dispersion. The dispersed core phase encapsulated can be water, or a water-immiscible solvent. The reactant(s) and coreactant(s) in such processes generally are various multihmctional acid chlorides, isocyanates, amines, and alcohols. For water-immiscible core materials, a multihmctional acid chloride, isocyanate or a combination of these reactants, is dissolved in the core and a multihmctional amine(s) or alcohol(s) is dissolved in the aqueous phase used to disperse the core material. For water or water-miscible core materials, the multihmctional amine(s) or alcohol(s) is dissolved in the core and a multihmctional acid chloride(s) or isocyanate(s) is dissolved in the continuous phase. Both cases have been used to produce capsules. [Pg.320]

A key feature of encapsulation processes (Figs. 4a and 5) is that the reagents for the interfacial polymerisation reaction responsible for shell formation are present in two mutually immiscible Hquids. They must diffuse to the interface in order to react. Once reaction is initiated, the capsule shell that forms becomes a barrier to diffusion and ultimately begins to limit the rate of the interfacial polymerisation reaction. This, in turn, influences morphology and uniformity of thickness of the capsule shell. Kinetic analyses of the process have been pubHshed (12). A drawback to the technology for some apphcations is that aggressive or highly reactive molecules must be dissolved in the core material in order to produce microcapsules. Such molecules can react with sensitive core materials. [Pg.320]

Figure 4b represents the case where a reactant dissolved in the dispersed phase reacts with the continuous phase to produce a co-reactant. The co-reactant and any remaining unreacted original reactant left in the dispersed phase then proceed to react with each other at the dispersed phase side of the interface and produce a capsule shell. Capsule shell formation occurs entirely because of reaction of reactants present in the droplets of dispersed phase. No reactant is added to the aqueous phase. As in the case of the process described by Figure 4a, a reactive species must be dissolved in the core material in order to produce a capsule shell. [Pg.320]

Figure 4c illustrates interfacial polymerisation encapsulation processes in which the reactant(s) that polymerise to form the capsule shell is transported exclusively from the continuous phase of the system to the dispersed phase—continuous phase interface where polymerisation occurs and a capsule shell is produced. This type of encapsulation process has been carried out at Hquid—Hquid and soHd—Hquid interfaces. An example of the Hquid—Hquid case is the spontaneous polymerisation reaction of cyanoacrylate monomers at the water—solvent interface formed by dispersing water in a continuous solvent phase (14). The poly(alkyl cyanoacrylate) produced by this spontaneous reaction encapsulates the dispersed water droplets. An example of the soHd—Hquid process is where a core material is dispersed in aqueous media that contains a water-immiscible surfactant along with a controUed amount of surfactant. A water-immiscible monomer that polymerises by free-radical polymerisation is added to the system and free-radical polymerisation localised at the core material—aqueous phase interface is initiated thereby generating a capsule sheU (15). [Pg.320]

Because the core of an aqueous micelle is extremely hydrophobic, it has the abiHty to solubiHze oil within it, as weU as to stabilize a dispersion. These solubilization and suspension properties of surfactants are the basis for the cleansing abiHty of soaps and other surfactants. Furthermore, the abiHty of surfactants to stabilize interfacial regions, particularly the air—water interface, is the basis for lathering, foaming, and sudsing. [Pg.150]

Simple considerations show that the membrane potential cannot be treated with computer simulations, and continuum electrostatic methods may constimte the only practical approach to address such questions. The capacitance of a typical lipid membrane is on the order of 1 j.F/cm-, which corresponds to a thickness of approximately 25 A and a dielectric constant of 2 for the hydrophobic core of a bilayer. In the presence of a membrane potential the bulk solution remains electrically neutral and a small charge imbalance is distributed in the neighborhood of the interfaces. The membrane potential arises from... [Pg.143]


See other pages where Interface core is mentioned: [Pg.222]    [Pg.222]    [Pg.320]    [Pg.61]    [Pg.118]    [Pg.357]    [Pg.4]    [Pg.179]    [Pg.73]    [Pg.635]    [Pg.179]    [Pg.239]    [Pg.692]    [Pg.247]    [Pg.222]    [Pg.222]    [Pg.222]    [Pg.222]    [Pg.320]    [Pg.61]    [Pg.118]    [Pg.357]    [Pg.4]    [Pg.179]    [Pg.73]    [Pg.635]    [Pg.179]    [Pg.239]    [Pg.692]    [Pg.247]    [Pg.222]    [Pg.222]    [Pg.2417]    [Pg.2418]    [Pg.2589]    [Pg.2591]    [Pg.2866]    [Pg.2871]    [Pg.127]    [Pg.336]    [Pg.258]    [Pg.348]    [Pg.148]    [Pg.518]    [Pg.435]    [Pg.321]    [Pg.224]    [Pg.138]    [Pg.37]    [Pg.197]    [Pg.231]    [Pg.307]   
See also in sourсe #XX -- [ Pg.143 , Pg.217 , Pg.333 ]




SEARCH



© 2024 chempedia.info