Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface between two immiscible solutions

As with polyesters, the amidation reaction of acid chlorides may be carried out in solution because of the enhanced reactivity of acid chlorides compared with carboxylic acids. A technique known as interfacial polymerization has been employed for the formation of polyamides and other step-growth polymers, including polyesters, polyurethanes, and polycarbonates. In this method the polymerization is carried out at the interface between two immiscible solutions, one of which contains one of the dissolved reactants, while the second monomer is dissolved in the other. Figure 5.7 shows a polyamide film forming at the interface between an aqueous solution of a diamine layered on a solution of a diacid chloride in an organic solvent. In this form interfacial polymerization is part of the standard repertoire of chemical demonstrations. It is sometimes called the nylon rope trick because of the filament of nylon produced by withdrawing the collapsed film. [Pg.307]

Heterogeneous electron reactions at liquid liquid interfaces occur in many chemical and biological systems. The interfaces between two immiscible solutions in water-nitrobenzene and water 1,2-dichloroethane are broadly used for modeling studies of kinetics of electron transfer between redox couples present in both media. The basic scheme of such a reaction is... [Pg.28]

Figure 12.1 Distribution of particles and charge at the interface between two immiscible solutions. Figure 12.1 Distribution of particles and charge at the interface between two immiscible solutions.
Interfacial Polymerization Interfacial polymerization is a process whereby very thin films or membranes, on the order of nanometer thickness, are produced by reacting two monomers at the interface between two immiscible solutions [199], Nanoparticles [200] and aqueous core capsules with very thin membranes have been produced using this method for drug delivery applications. [Pg.1303]

Interfaces between two immiscible solutions with dissolved electrolytes, which are most interesting to workers in several disciplines, cover theoretical physical electrochemistry and analytical applications for sensor design. These interfaces are used in interpretation of processes that occur in biological membranes and in biological systems. The interface between two immiscible electrolyte solutions was studied for the first time at least 100 years ago by Nemst (I), who performed the experiments that provide the theoretical basis for current potentiometric and voltammetric studies of interfaces. In 1963, Blank and Feig (2) suggested that an interface between two immiscible liquids could be used as a model (at least as a crude approximation) for... [Pg.62]

Figure 1. Comparison of the interface between an electronically conductive electrode and a solution reduction of Fe3+) (A) and the interface between two immiscible solutions of electrolytes (ITIES) during current flow in a closed electric circuit [transport of picrate (Pi ) from nonaqueous phase (n) to water (w)] (B). (Reproduced from reference 4. Copyright 1990 American Chemical... Figure 1. Comparison of the interface between an electronically conductive electrode and a solution reduction of Fe3+) (A) and the interface between two immiscible solutions of electrolytes (ITIES) during current flow in a closed electric circuit [transport of picrate (Pi ) from nonaqueous phase (n) to water (w)] (B). (Reproduced from reference 4. Copyright 1990 American Chemical...
Second harmonic generation has also been used to study the semiconductor/ solution interface during the deposition of gold on Si(lll) [777]. In a setup combining SHG and the electrochemical quartz crystal microbalance (EQCM), the underpotential deposition of copper on a polycrystalline gold surface has been studied a decrease of the SHG signal by 60% upon formation of the upd-layer was found [778]. A study of the electrochemical liquid/liquid interface between two immiscible solutions where adsorption of surfactants occurred has been reported [779]. [Pg.175]

The interface between two immiscible solutions (e.g. water and nitrobenzene) containing dissolved species is a site of an electric potential. By measuring this potential difference at the aqueous elec-trolyte/solid electrolyte phase boundary, the phenomena taking place at the interface between two immiscible solutions or the membranes of ion-selective electrode have been studied. Changing the composition of the solutions in contact can alter this potential or applied current can alter the composition of the solutions. Thus, judicious choice of applied potential or current can be used to study the structure of the interface. Since the interface is ul-trathin (< cl nm), it cannot be observed directly. It can be, however, investigated by electrochemical or optical methods [14,... [Pg.5822]

The first major observation of ionic current across the interface between two immiscible solutions was reported by Nernst and Riesenfeld," who in 1902, studied the transport of colored electrolytes across water-phenol-water concentration cells. However, it was only in 1974 that Gavach et al applied what we could call... [Pg.11]

Figure 5.3. A cellular automata model of the interface between two immiscible bquids, after the demixing process has reached an equilibrium. A solute (encircled cells) has partitioned into the two phases according to its partition coefficient... Figure 5.3. A cellular automata model of the interface between two immiscible bquids, after the demixing process has reached an equilibrium. A solute (encircled cells) has partitioned into the two phases according to its partition coefficient...
An interface between two immiscible electrolyte solutions (ITIES) is formed between two liqnid solvents of a low mutual miscibility (typically, <1% by weight), each containing an electrolyte. One of these solvents is usually water and the other one is a polar organic solvent of a moderate or high relative dielectric constant (permittivity). The latter requirement is a condition for at least partial dissociation of dissolved electrolyte(s) into ions, which thus can ensure the electric conductivity of the liquid phase. A list of the solvents commonly used in electrochemical measurements at ITIES is given in Table 32.1. [Pg.607]

ITIES interface between two immiscible electrolyte solutions... [Pg.742]

Liquid surfaces and liquid-liquid interfaces are very common and have tremendous significance in the real world. Especially important are the interfaces between two immiscible liquid electrolyte solutions (acronym ITIES), which occur in tissues and cells of all living organisms. The usual presence of aqueous electrolyte solution as one phase of ITIES is the main reason for the electrochemical nature of such interfaces. [Pg.17]

A. R. Brown. Photoelectrochemical Processes at the Interface Between Two Immiscible Electrolyte Solutions. PhD Thesis, University of Edinburgh, Edinburgh, 1992. [Pg.236]

The theoretical results described have implications for the design of experimental approaches for the study of transfer processes across the interface between two immiscible phases. The current response in SECMIT is clearly sensitive to the relative diffusion coefficients and concentrations of a solute in the two phases and the kinetics of interfacial transfer over a wide range of values of these parameters. [Pg.313]

The structure of the interface between two immiscible electrolyte solutions (ITIES) has been the matter of considerable interest since the beginning of the last century [1], Typically, such a system consists of water (w) and an organic solvent (o) immiscible with it, each containing an electrolyte. Much information about the ITIES has been gained by application of techniques that involve measurements of the macroscopic properties, such as surface tension or differential capacity. The analysis of these properties in terms of various microscopic models has allowed us to draw some conclusions about the distribution and orientation of ions and neutral molecules at the ITIES. The purpose of the present chapter is to summarize the key results in this field. [Pg.419]

In particular, the coupling between the ion transfer and ion adsorption process has serious consequences for the evaluation of the differential capacity or the kinetic parameters from the impedance data [55]. This is the case, e.g., of the interface between two immiscible electrolyte solutions each containing a transferable ion, which adsorbs specifically on both sides of the interface. In general, the separation of the real and the imaginary terms in the complex impedance of such an ITIES is not straightforward, and the interpretation of the impedance in terms of the Randles-type equivalent circuit is not appropriate [54]. More transparent expressions are obtained when the effect of either the potential difference or the ion concentration on the specific ion adsorption is negli-... [Pg.431]

ITIES interface between two immiscible electrolyte solutions K tautomeric equilibrium constant between the zwitterionic and the neutral forms of a compound... [Pg.759]

V. Gobry, F. Re5miond and H. H. Girault, Refinment of Ionic Partition Diagrams and Determination of Partition Coefficients of Multiprotic Compounds by Electrochemistry at the Interface between Two Immiscible Electrolyte Solutions, submitted. [Pg.768]

Potential differences at the interface between two immiscible electrolyte solutions (ITIES) are typical Galvani potential differences and cannot be measured directly. However, their existence follows from the properties of the electrical double layer at the ITIES (Section 4.5.3) and from the kinetics of charge transfer across the ITIES (Section 5.3.2). By means of potential differences at the ITIES or at the aqueous electrolyte-solid electrolyte phase boundary (Eq. 3.1.23), the phenomena occurring at the membranes of ion-selective electrodes (Section 6.3) can be explained. [Pg.201]

Electrical double layers are also characteristic of the semiconductor-electrolyte solution, solid electrolyte or insulator-electrolyte solution interface and for the interface between two immiscible electrolyte solutions (ITIES) (Section 4.5). [Pg.213]


See other pages where Interface between two immiscible solutions is mentioned: [Pg.153]    [Pg.153]    [Pg.153]    [Pg.153]    [Pg.202]    [Pg.348]    [Pg.358]    [Pg.607]    [Pg.608]    [Pg.610]    [Pg.612]    [Pg.614]    [Pg.616]    [Pg.618]    [Pg.8]    [Pg.149]    [Pg.190]    [Pg.290]    [Pg.332]    [Pg.379]    [Pg.535]    [Pg.260]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Immiscibility

Immiscibility Immiscible

Immiscible

Immiscible solutions

Interface between two immiscible

Interface between two immiscible electrolyte solutions

Interface between two immiscible electrolyte solutions ion transfer

Interface solution

The interface between two immiscible solutions

Two solutions

© 2024 chempedia.info