Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interactions spectroscopy

KEYWORDS Protein-Protein Interaction, Sulfate Reducing Bacteria, Flavodoxin, Cytochrome C3, Molecular Modeling, Molecular Recognition, non-covalent interactions, spectroscopy - H-NMR. [Pg.279]

SERS. A phenomenon that certainly involves the adsorbent-adsorbate interaction is that of surface-enhanced resonance Raman spectroscopy, or SERS. The basic observation is that for pyridine adsorbed on surface-roughened silver, there is an amazing enhancement of the resonance Raman intensity (see Refs. 124—128). More recent work has involved other adsorbates and colloidal... [Pg.591]

Electrons, protons and neutrons and all other particles that have s = are known as fennions. Other particles are restricted to s = 0 or 1 and are known as bosons. There are thus profound differences in the quantum-mechanical properties of fennions and bosons, which have important implications in fields ranging from statistical mechanics to spectroscopic selection mles. It can be shown that the spin quantum number S associated with an even number of fennions must be integral, while that for an odd number of them must be half-integral. The resulting composite particles behave collectively like bosons and fennions, respectively, so the wavefunction synnnetry properties associated with bosons can be relevant in chemical physics. One prominent example is the treatment of nuclei, which are typically considered as composite particles rather than interacting protons and neutrons. Nuclei with even atomic number tlierefore behave like individual bosons and those with odd atomic number as fennions, a distinction that plays an important role in rotational spectroscopy of polyatomic molecules. [Pg.30]

Spectroscopy is the most important experimental source of infomiation on intemiolecular interactions. A wide range of spectroscopic teclmiques is being brought to bear on the problem of weakly bound or van der Waals complexes [94, 95]. Molecular beam microwave spectroscopy, pioneered by Klemperer and refined by Flygare, has been used to detemiine the microwave spectra of a large number of weakly bound complexes and obtain stmctiiral infomiation... [Pg.200]

This section begins with a brief description of the basic light-molecule interaction. As already indicated, coherent light pulses excite coherent superpositions of molecular eigenstates, known as wavepackets , and we will give a description of their motion, their coherence properties, and their interplay with the light. Then we will turn to linear and nonlinear spectroscopy, and, finally, to a brief account of coherent control of molecular motion. [Pg.219]

As described at the end of section Al.6.1. in nonlinear spectroscopy a polarization is created in the material which depends in a nonlinear way on the strength of the electric field. As we shall now see, the microscopic description of this nonlinear polarization involves multiple interactions of the material with the electric field. The multiple interactions in principle contain infomiation on both the ground electronic state and excited electronic state dynamics, and for a molecule in the presence of solvent, infomiation on the molecule-solvent interactions. Excellent general introductions to nonlinear spectroscopy may be found in [35, 36 and 37]. Raman spectroscopy, described at the end of the previous section, is also a nonlinear spectroscopy, in the sense that it involves more than one interaction of light with the material, but it is a pathological example since the second interaction is tlirough spontaneous emission and therefore not proportional to a driving field... [Pg.252]

Figure Al.6.16. Diagram showing the directionality of the signal in coherent spectroscopy. Associated with the carrier frequency of each interaction with the light is a wavevector, k. The output signal in coherent spectroscopies is detemiined from the direction of each of the input signals via momentum conservation (after [48a]). Figure Al.6.16. Diagram showing the directionality of the signal in coherent spectroscopy. Associated with the carrier frequency of each interaction with the light is a wavevector, k. The output signal in coherent spectroscopies is detemiined from the direction of each of the input signals via momentum conservation (after [48a]).
Electrons interact with solid surfaces by elastic and inelastic scattering, and these interactions are employed in electron spectroscopy. For example, electrons that elastically scatter will diffract from a single-crystal lattice. The diffraction pattern can be used as a means of stnictural detenuination, as in FEED. Electrons scatter inelastically by inducing electronic and vibrational excitations in the surface region. These losses fonu the basis of electron energy loss spectroscopy (EELS). An incident electron can also knock out an iimer-shell, or core, electron from an atom in the solid that will, in turn, initiate an Auger process. Electrons can also be used to induce stimulated desorption, as described in section Al.7.5.6. [Pg.305]

Powell C J 1994 Inelastic interactions of electrons with surfaces applications to Auger-electron spectroscopy and x-ray photoelectron spectroscopy Surf. Sc/. 299-300 34... [Pg.318]

The molecular constants that describe the stnicture of a molecule can be measured using many optical teclmiques described in section A3.5.1 as long as the resolution is sufficient to separate the rovibrational states [110. 111 and 112]. Absorption spectroscopy is difficult with ions in the gas phase, hence many ion species have been first studied by matrix isolation methods [113], in which the IR spectrum is observed for ions trapped witliin a frozen noble gas on a liquid-helium cooled surface. The measured frequencies may be shifted as much as 1 % from gas phase values because of the weak interaction witli the matrix. [Pg.813]

Both infrared and Raman spectroscopy provide infonnation on the vibrational motion of molecules. The teclmiques employed differ, but the underlying molecular motion is the same. A qualitative description of IR and Raman spectroscopies is first presented. Then a slightly more rigorous development will be described. For both IR and Raman spectroscopy, the fiindamental interaction is between a dipole moment and an electromagnetic field. Ultimately, the two... [Pg.1151]

Raman scattering has been discussed by many authors. As in the case of IR vibrational spectroscopy, the interaction is between the electromagnetic field and a dipole moment, however in this case the dipole moment is induced by the field itself The induced dipole is pj j = a E, where a is the polarizability. It can be expressed in a Taylor series expansion in coordinate isplacement... [Pg.1158]

Vibrational spectroscopy has been, and will continue to be, one of the most important teclmiques in physical chemistry. In fact, the vibrational absorption of a single acetylene molecule on a Cu(lOO) surface was recently reported [ ]. Its endurance is due to the fact that it provides detailed infonnation on structure, dynamics and enviromnent. It is employed in a wide variety of circumstances, from routine analytical applications, to identifying novel (often transient) species, to providing some of the most important data for advancing the understanding of intramolecular and intemiolecular interactions. [Pg.1175]

Tokmakoff A, Lang M J, Larsen D S, Fleming G R, Chernyak V and Mukamel S 1997 Two-dimensional Raman spectroscopy of vibrational interactions in liquids Phys. Rev. Lett. 79 2702-5... [Pg.1176]

Lee D and Albrecht A C 1993 On global energy conservation in nonlinear light matter interaction the nonlinear spectroscopies, active and passive Adv. Phys. Chem. 83 43-87... [Pg.1225]

Spectroscopy, or the study of the interaction of light with matter, has become one of the major tools of the natural and physical sciences during this century. As the wavelength of the radiation is varied across the electromagnetic spectrum, characteristic properties of atoms, molecules, liquids and solids are probed. In the... [Pg.1232]

Of the NMR-active nuclei around tluee-quarters have / > 1 so that the quadnipole interaction can affect their spectra. The quadnipole inter action can be significant relative to the Zeeman splitting. The splitting of the energy levels by the quadnipole interaction alone gives rise to pure nuclear quadnipole resonance (NQR) spectroscopy. This chapter will only deal with the case when the quadnipole interaction can be regarded as simply a perturbation of the Zeeman levels. [Pg.1469]

Physical background. MAS will narrow the inliomogeneously broadened satellite transitions to give a series of sharp sidebands whose intensity envelopes closely follow the static powder pattern so that the quadnipole interaction can be deduced. The work of Samoson [25] gave real impetus to satellite transition spectroscopy by showing that both the second-order quadnipolar linewidths and isotropic shifts are fiinctions of / and Some combinations of / and produce smaller second-order quadnipolar effects on the satellite lines than... [Pg.1485]

The cross-correlation effects between the DD and CSA interactions also influence the transverse relaxation and lead to the phenomenon known as differential line broadening in a doublet [40], cf Figure Bl.13.8. There is a recent experiment, designed for protein studies, that I wish to mention at tire end of this section. It has been proposed by Pervushin etal [4T], is called TROSY (transverse relaxation optimized spectroscopy) and... [Pg.1513]

Gotsmann B, Anczykowski B, Seidel C and Fuchs H 1999 Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves Appl. Surf. Sc/. 140 314... [Pg.1724]


See other pages where Interactions spectroscopy is mentioned: [Pg.13]    [Pg.261]    [Pg.331]    [Pg.404]    [Pg.13]    [Pg.261]    [Pg.331]    [Pg.404]    [Pg.230]    [Pg.519]    [Pg.80]    [Pg.218]    [Pg.253]    [Pg.255]    [Pg.264]    [Pg.264]    [Pg.805]    [Pg.1179]    [Pg.1179]    [Pg.1188]    [Pg.1233]    [Pg.1255]    [Pg.1466]    [Pg.1484]    [Pg.1499]    [Pg.1547]    [Pg.1567]    [Pg.1572]    [Pg.1581]    [Pg.1582]    [Pg.1623]    [Pg.1716]   
See also in sourсe #XX -- [ Pg.295 , Pg.296 , Pg.297 , Pg.298 , Pg.299 , Pg.300 , Pg.301 , Pg.302 , Pg.303 , Pg.304 , Pg.305 , Pg.306 , Pg.307 , Pg.308 , Pg.309 , Pg.310 , Pg.311 , Pg.312 ]




SEARCH



Active spectroscopies, nonlinear light interaction

Bleaney, Magnetic resonance spectroscopy and hyperfine interactions

Configuration interaction electronic spectroscopy

Configuration interaction organic molecule spectroscopy

Electron paramagnetic resonance spectroscopy spin interactions

Electron spin resonance spectroscopy nuclear hyperfine interaction

Fermi resonance interaction spectroscopy

Fluorescence spectroscopy intermolecular interactions

Fourier-transform infrared spectroscopy protein interactions

Hyperfine interaction, Mossbauer spectroscopy

Infrared spectroscopy cation interactions

Infrared spectroscopy support-metal interaction

Monopole interactions, Mossbauer spectroscopy

Mossbauer spectroscopy electric field gradient interactions

Mossbauer spectroscopy electric monopole interaction

Mossbauer spectroscopy electric quadrupole interaction

Mossbauer spectroscopy hyperfine interactions detected

Mossbauer spectroscopy isomer shift hyperfine interactions

Mossbauer spectroscopy magnetic hyperfine interactions

Mossbauer spectroscopy quadrupole interaction

Nuclear magnetic resonance spectroscopy dipolar interactions

Nuclear magnetic resonance spectroscopy quadrupolar interactions

Nuclear magnetic resonance spectroscopy solid-state interactions

Photoelectron spectroscopy applied polymer-metal interactions

Resonance Spectroscopy and Hyperfine Interactions

Spectroscopy oriented configuration interaction

Strong metal-support interactions spectroscopy

Studies of chromophore-DNA interaction by vibrational spectroscopy

Vibrational spectroscopy maximum interaction

© 2024 chempedia.info