Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Input Detector

Figure Bl.10.7. Electron impact ionization coincidence experiment. The experiment consists of a source of incident electrons, a target gas sample and two electron detectors, one for the scattered electron, the other for the ejected electron. The detectors are coimected tlirough preamplifiers to the inputs (start and stop) of a time-to-amplitiide converter (TAC). The output of the TAC goes to a pulse-height-analyser (PHA) and then to a nuiltichaimel analyser (MCA) or computer. Figure Bl.10.7. Electron impact ionization coincidence experiment. The experiment consists of a source of incident electrons, a target gas sample and two electron detectors, one for the scattered electron, the other for the ejected electron. The detectors are coimected tlirough preamplifiers to the inputs (start and stop) of a time-to-amplitiide converter (TAC). The output of the TAC goes to a pulse-height-analyser (PHA) and then to a nuiltichaimel analyser (MCA) or computer.
The amplified signal is passed to a double-balanced mixer configured as a phase-sensitive detector where the two inputs are the NMR signal (cOq) and the frequency of the synthesizer (03. gf) with the output proportional to cos(coq - co gj.)t + 0) + cos((coq + + 9). The sum frequency is much larger than the total bandwidth of the... [Pg.1475]

Modern XPS spectrometers employ a lens system on the input to the CHA, which has the effect of transferring an image of the analyzed area on the sample surface to the entrance slit of the analyzer. The detector system on the output of the CHA consists of several single channeltrons or a channel plate. Such a spectrometer is illustrated schematically in Fig. 2.6. [Pg.14]

The measurement data are derived from some form of detector or transducer, the output of which is an electrical signal that must then be conditioned to a value suitable for the input to the telemetry system (typically, of the order of 10 V). In some cases, amplification is required and in others, attenuation is needed. [Pg.246]

At 10Hz in a typical Nd-YAG laser 1000Hz/- /Hz, and the typical finesse asymmetry is of the order of one percent. In order to detect a gw signal the laser frequency noise has to be lowered by six orders of magnitudes (compared to the noise of a free running laser), and the two arms made as identical as possible. In order to achieve this complex frequency stabilization methods are employed in all interferometric detectors, and in order to insure the perfect symmetry of the interferometer, all pairs of Virgo optical components are coated during the same run (both Fabry-Perot input mirrors then both end mirrors are coated simultaneously). [Pg.322]

The main source of noise of such a heterodyne detector is the photon noise that takes place at the splitting of the local oscillator. Quantum physicists see this noise as originating from vacuum fluctuation on the input arm. This gives directly the spectral density of noise at input hv/2. [Pg.368]

With the multitude of transducer possibilities in terms of electrode material, electrode number, and cell design, it becomes important to be able to evaluate the performance of an LCEC system in some consistent and meaningful maimer. Two frequently confused and misused terms for evaluation of LCEC systems are sensitivity and detection limit . Sensitivity refers to the ratio of output signal to input analyte amount generally expressed for LCEC as peak current per injected equivalents (nA/neq or nA/nmol). It can also be useful to define the sensitivity in terms of peak area per injected equivalents (coulombs/neq) so that the detector conversion efficiency is obvious. Sensitivity thus refers to the slope of the calibration curve. [Pg.24]

The worst operating condition in a common design practice consists of overly conservative assumptions on the hot-channel input. These assumptions must be realistically evaluated in a subchannel analysis by the help of in-core instrumentation measurements. In the early subchannel analysis codes, the core inlet flow conditions and the axial power distribution were preselected off-line, and the most conservative values were used as inputs to the code calculations. In more recent, improved codes, the operating margin is calculated on-line, and the hot-channel power distributions are calculated by using ex-core neutron detector signals for core control. Thus the state parameters (e.g., core power, core inlet temper-... [Pg.431]

Radiation detector output signals are usually weak and require amplification before they can be used. In radiation detection circuits, the nature of the input pulse and discriminator determines the characteristics that the preamplifier and amplifier must have. Two stages of amplification are used in most detection circuits to increase the signal-to-noise ratio. [Pg.81]

A discriminator circuit selects the minimum pulse height. When the input pulse exceeds the discriminator preset level, the discriminator generates an output pulse. The discriminator input is normally an amplified and shaped detector signal. This signal is an analog signal because the amplitude is proportional to the energy of the incident particle. [Pg.83]

The simplest way to form arrays of integrated optical sensors is to put them all in parallel while all are fed from one input channel the input power being divided over all sensors by using e.g. a star coupler. Every sensor has its own output, detector and electronic processing unit and all sensors can be monitored simultaneously. [Pg.278]


See other pages where Input Detector is mentioned: [Pg.443]    [Pg.443]    [Pg.211]    [Pg.301]    [Pg.1236]    [Pg.1314]    [Pg.1428]    [Pg.1574]    [Pg.2825]    [Pg.2873]    [Pg.3029]    [Pg.374]    [Pg.196]    [Pg.512]    [Pg.432]    [Pg.432]    [Pg.434]    [Pg.397]    [Pg.71]    [Pg.123]    [Pg.589]    [Pg.690]    [Pg.297]    [Pg.420]    [Pg.245]    [Pg.327]    [Pg.240]    [Pg.153]    [Pg.174]    [Pg.175]    [Pg.187]    [Pg.191]    [Pg.17]    [Pg.23]    [Pg.418]    [Pg.253]    [Pg.26]    [Pg.373]    [Pg.79]    [Pg.51]    [Pg.368]   


SEARCH



Detectors noise equivalent input power

© 2024 chempedia.info