Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiator polyester resin

Sold commercially as a 30-60% so In of a mixture of compounds corresponding to breaking one or both -0-0-1 irikages hydroperoxides, hydroxy-hydroperoxides, etc.) used to initiate polyester resin polymerization Lupersol DDNi is the trade name of Wallace Tieman, Inc, Lucidol Div, 1740 Military Rd, Buffalo, NY, 14205... [Pg.185]

Organic peroxides are used extensively for the curing of unsaturated polyester resins and the polymerization of monomers having vinyl unsaturation. The —O—O— bond is split into free radicals which can initiate polymerization or cross-linking of various monomers or polymers. [Pg.1011]

Aromatic diacyl peroxides such as dibenzoyl peroxide (BPO) [94-36-0] may be used with promoters to lower the usehil decomposition temperatures of the peroxides, although usually with some sacrifice to radical generation efficiency. The most widely used promoter is dimethylaniline (DMA). The BPO—DMA combination is used for hardening (curing) of unsaturated polyester resin compositions, eg, body putty in auto repair kits. Here, the aromatic amine promoter attacks the BPO to initially form W-benzoyloxydimethylanilinium benzoate (ion pair) which subsequentiy decomposes at room temperature to form a benzoate ion, a dimethylaniline radical cation, and a benzoyloxy radical that, in turn, initiates the curing reaction (33) ... [Pg.223]

Ketone Peroxides. These materials are mixtures of compounds with hydroperoxy groups and are composed primarily of the two stmctures shown in Table 2. Ketone peroxides are marketed as solutions in inert solvents such as dimethyl phthalate. They are primarily employed in room-temperature-initiated curing of unsaturated polyester resin compositions (usually containing styrene monomer) using transition-metal promoters such as cobalt naphthenate. Ketone peroxides contain the hydroperoxy (—OOH) group and thus are susceptible to the same ha2ards as hydroperoxides. [Pg.228]

Unsaturated polyester resins prepared by condensation polymerization constitute the largest industrial use for maleic anhydride. Typically, maleic anhydride is esterified with ethylene glycol [107-21-1] and a vinyl monomer or styrene is added along with an initiator such as a peroxide to produce a three-dimensional macromolecule with rigidity, insolubiUty, and mechanical strength. [Pg.453]

Commercially available MEKP formulations are mixtures of the dihydroperoxide (1), where X = OOH R = H, R = methyl, and R = ethyl (2,2-dihydroperoxybutane [2625-67 ]) and dialkyl peroxide (2), where X = OOH, Y = OOH, R = methyl, and R = ethyl (di(2-hydroperoxy-2-butyl) peroxide [126-76-1J). These formulations are widely used as free-radical initiators in the metal-promoted cure of unsaturated polyester resins at about 20°C. [Pg.114]

Uses. About 35% of the isophthahc acid is used to prepare unsaturated polyester resins. These are condensation products of isophthahc acid, an unsaturated dibasic acid, most likely maleic anhydride, and a glycol such as propylene glycol. The polymer is dissolved in an inhibited vinyl monomer, usually styrene with a quinone inhibitor. When this viscous hquid is treated with a catalyst, heat or free-radical initiation causes cross-linking and sohdification. A range of properties is possible depending on the reactants used and their ratios (97). [Pg.494]

Polyester resins can also be rapidly formed by the reaction of propylene oxide (5) with phthaUc and maleic anhydride. The reaction is initiated with a small fraction of glycol initiator containing a basic catalyst such as lithium carbonate. Molecular weight development is controlled by the concentration of initiator, and the highly exothermic reaction proceeds without the evolution of any condensate water. Although this technique provides many process benefits, the low extent of maleate isomerization achieved during the rapid formation of the polymer limits the reactivity and ultimate performance of these resins. [Pg.314]

Catalyst Selection. The low resin viscosity and ambient temperature cure systems developed from peroxides have faciUtated the expansion of polyester resins on a commercial scale, using relatively simple fabrication techniques in open molds at ambient temperatures. The dominant catalyst systems used for ambient fabrication processes are based on metal (redox) promoters used in combination with hydroperoxides and peroxides commonly found in commercial MEKP and related perketones (13). Promoters such as styrene-soluble cobalt octoate undergo controlled reduction—oxidation (redox) reactions with MEKP that generate peroxy free radicals to initiate a controlled cross-linking reaction. [Pg.318]

Unsaturated polyester resin powders can provide a colored and finished exterior molded surface or a finish ready for painting. Normally, a primer/sealer must be appHed to molded articles prior to painting. In addition to the unsaturated polyester resin, multifimctional unsaturated monomers such as triaHyl cyanurate (TAC) [101-37-1] or diaHyl phthalate (DAP) [131-17-9] suitable peroxide initiators (qv) or mixtures thereof, and mold release agents (qv) are used to formulate the coating powder (46). [Pg.322]

Polyesters. Unsaturated polyester resins based on DCPD, maleic anhydride, and glycols have been manufactured for many years. At least four ways of incorporating DCPD into these resins have been described (45). The resins are mixed with a cross-linking compound, usually styrene, and final polymerization is accompHshed via a free-radical initiator such as methyl ethyl ketone peroxide. [Pg.434]

Over the years many blends of polyurethanes with other polymers have been prepared. One recent example is the blending of polyurethane intermediates with methyl methacrylate monomer and some unsaturated polyester resin. With a suitable balance of catalysts and initiators, addition and rearrangement reactions occur simultaneously but independently to give interpenetrating polymer networks. The use of the acrylic monomer lowers cost and viscosity whilst blends with 20% (MMA + polyester) have a superior impact strength. [Pg.808]

As small molecule fragments resulting from the initiator may plasticize the polymer and lower performance, approaches have been developed to avoid this. A dihydroxyamine can be used to form a polyester [52]. This accelerator gave a modest increase in the strength of unsaturated polyester resins. A polymerizable tertiary amine has been prepared by the reaction of A-methylaniline with glycidyl methacrylate [53] (Scheme 8). [Pg.835]

The free radicals then initiate curing by attacking residual double bonds in acrylic oligomers and monomers, or in styrene and unsaturated polyester resins. Since most pigments absorb u.v. radiation and can prevent it reaching sufficient photoinitiator molecules, this technique is best suited to transparent coatings or thin pigmented layers (e.g. inks). [Pg.625]

For a complete panel replacement, the refinisher starts with a panel preprimed in the appropriate stoving primer. For spot repairs or larger repairs without replacement of metal, there will be areas which have to be rubbed through to clean metal. Any indentations then have to be filled with a stopper or spray filler, probably based on unsaturated polyester resins and styrene, with cure initiated by mixing in an organic peroxide. After sanding, remaining bare metal areas are sprayed with a two-pack etch primer. [Pg.627]

Coating materials may be based on short or medium-oil alkyds (e.g. primers for door and window frames) nitrocellulose or thermoplastic acrylics (e.g. lacquers for paper or furniture finishes) amino resin-alkyd coatings, with or without nitrocellulose inclusions, but with a strong acid catalyst to promote low temperature cure (furniture finishes) two-pack polyurethanes (furniture, flat boards) unsaturated polyester resins in styrene with free-radical cure initiated by peroxides (furniture) or unsaturated acrylic oligomers and monomers cured by u.v. radiation or electron beams (coatings for record sleeves paperback covers, knock-down furniture or flush interior doors). [Pg.634]

Polyester-based networks are typically prepared from polyester prepolymers bearing unsaturations which can be crosslinked. The crosslinking process is either an autoxidation in the presence of air oxygen (alkyd resins) or a copolymerization with unsaturated comonomers in the presence of radical initiators (unsaturated polyester resins). It should also be mentioned that hydroxy-terminated saturated polyesters are one of the basis prepolymers used in polyurethane network preparation (see Chapter 5). [Pg.58]

The final properties depend not only on unstaturated polyester structure but also on a number of other parameters, such as the nature and proportion of unsaturated comonomer, the nature of the initiator, and the experimental conditions of the crosslinking reaction. Moreover, since polyester resins are mainly used as matrices for composite materials, the nature and amount of inorganic fillers and of reinforcing fibers are also of considerable importance. These aspects have been discussed in many reviews and book chapters and are beyond the scope of this chapter.7-9... [Pg.59]

Although polyurethanes or other reactive resins can be used in RTM, the most common resins are polyesters and epoxies. The two pumping reservoirs in Figure 7.90, then, contain polyester resin and initiator, or epoxy resin and hardener, respectively. Epoxies require relatively long cycle times. When cycle time is critical, low viscosity vinyl ester, acrylamate, or urethanes can be injected very rapidly into the mold. Even the use of thermoplastics is possible. [Pg.799]

The free-radical cure mechanism of the vinyl ester resins is well understood. In most respects, it is similar to that of the unsaturated polyester resins. To initiate the curing process, it is necessary to generate free radicals within Ike resm mass. Organic peroxides are tlie most common source of free radicals. These peroxides will decompose under the influence of elevated temperatures or chemical promoters, e.g., organometallics or tertiary amines, to form free radicals. Generation of free radicals also can be effected by ultraviolet or high-energy radiation applied directly to the resin system. The free radicals thus formed react to open the double bond... [Pg.1688]

In conclusion, we would like to mention that, in addition to this new direction, a large consumer of metal alkoxides (initially aluminium and titanium) is by tradition the technology of materials, where the alkoxides are used for hy-drophobization and for cross-linking of the polyhydroxocompounds, epoxides and polyester resins, and organosilicon polymers. The products of the partial hydrolysis and pyrolysis of alkoxides — polyorganometalloxanes — are applied as components of the thermally stable coatings [48J. [Pg.10]

Sheet and Bulk Molding Compounds. The activity with SMC and and BMC is based on resin technology which was known more than 20 years ago (3). The key concept involves increasing the viscosity of the unsaturated polyester resin. The polyester resin with an initial viscosity of several thousand centipoise is advanced chemically to a viscosity of several million centipoise. [Pg.464]


See other pages where Initiator polyester resin is mentioned: [Pg.375]    [Pg.225]    [Pg.225]    [Pg.322]    [Pg.345]    [Pg.30]    [Pg.59]    [Pg.41]    [Pg.204]    [Pg.523]    [Pg.225]    [Pg.1047]    [Pg.82]    [Pg.375]    [Pg.322]    [Pg.225]    [Pg.225]    [Pg.141]   
See also in sourсe #XX -- [ Pg.282 , Pg.284 ]




SEARCH



Peroxide initiator polyester resin

Polyester resins

Polyester resins resin

© 2024 chempedia.info