Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initial state control

As mentioned earlier, global formulas correspond to properties that must hold for the VHDL program as a whole. Four types of global formulas are needed initial state, control flow, signal persistence, and variable persistence. [Pg.97]

Under the usual conditions their ratio is kinetically controlled. Alder and Stein already discerned that there usually exists a preference for formation of the endo isomer (formulated as a tendency of maximum accumulation of unsaturation, the Alder-Stein rule). Indeed, there are only very few examples of Diels-Alder reactions where the exo isomer is the major product. The interactions underlying this behaviour have been subject of intensive research. Since the reactions leadirig to endo and exo product share the same initial state, the differences between the respective transition-state energies fully account for the observed selectivity. These differences are typically in the range of 10-15 kJ per mole. ... [Pg.6]

Maintenance on gas trucks is also higher than with electric vehicles. About 5 percent annually of the initial cost applies to internal-combustion equipment, and about 2 percent annually to electric. A special feature on electric trucks with solid-state controls is the use of modules or circuit boards, which can be replaced as units and rebuilt at the factoiy. Typical maintenance costs for trucks operating five 8-h shifts per week are in the order of 3.15 per hour for gas vehicles and 1.78 per hour for electric ones. Under these conditions, energy costs are typically 9.3 cents per hour for gas trucks and 5.1 cents per hour for the electric units. [Pg.1976]

A system is said to be controllable if a control vector u(t) exists that will transfer the system from any initial state x(to) to some final state t) in a finite time interval. [Pg.248]

The elastic-shock region is characterized by a single, narrow shock front that carries the material from an initial state to a stress less than the elastic limit. After a quiescent period controlled by the loading and material properties, the unloading wave smoothly reduces the stress to atmospheric pressure over a time controlled by the speeds of release waves at the finite strains of the loading. Even though experiments in shock-compression science are typically... [Pg.19]

Depending on how many different samples of behavior you have the patience to analyze (and other factors, some of which, such as how representative the initial states in these samples are of the set of all possible initial states, may be beyond your control), you may or may not get a fairly complete picture of what kinds of objects exist and what sorts of interactions are allowed in this one-dimensional alien universe. At worst, you will grow tired long before you have had the chance to record even a small fraction of the total number of possible states in this world. [Pg.662]

The value of is the difference in partial molal volume between the transition state and the initial state, but it can be approximated by the molar volume. Increasing pressure decreases the value of AV and if A V is negative the reaction rate is accelerated. This equation is not strictly obeyed above lOkbar. If the transition state of a reaction involves bond formation, concentration of charge, or ionization, a negative volume of activation often results. Cleavage of a bond, dispersal of charge, neutralization of the transition state and diffusion control lead to a positive volume of activation. Reactions for which rate enhancement is expected at high pressure include ... [Pg.457]

Easy availability of ultrafast high intensity lasers has fuelled the dream of their use as molecular scissors to cleave selected bonds (1-3). Theoretical approaches to laser assisted control of chemical reactions have kept pace and demonstrated remarkable success (4,5) with experimental results (6-9) buttressing the theoretical claims. The different tablished theoretical approaches to control have been reviewed recently (10). While the focus of these theoretical approaches has been on field design, the photodissociation yield has also been found to be extremely sensitive to the initial vibrational state from which photolysis is induced and results for (11), HI (12,13), HCl (14) and HOD (2,3,15,16) reveal a crucial role for the initial state of the system in product selectivity and enhancement. This critical dependence on initial vibrational state indicates that a suitably optimized linear superposition of the field free vibrational states may be another route to selective control of photodissociation. [Pg.263]

The experimental realization of the optimal initial states is however a completely uncharted area at this time. In an earlier paper (17), we have presented the formulae to obtain field parameters required to achieve these field optimized initial states and the optimal control (30) approach may also be easily and profitably employed to attain this FOIST comprising of only three... [Pg.276]

The above set of conditions are complete in the sense that a transition from any initial state to any final state can be controlled perfectly. This idea can also be applied to multilevel problems. In the practical applications, the quadratic chirping, that is, one-period oscillation, is quite useful, as demonstrated by numerical applications given below. [Pg.153]

Figure 39. Pump-dump control of NaK molecule by using two quadratically chirped pulses. The initial state taken as the ground vibrational eigenstate of the ground state X is excited by a quadratically chirped pulse to the excited state A. This excited wavepacket is dumped at the outer turning point at t 230 fs by the second quadratically chirped pulse. The laser parameters used are = 2.75(1.972) X 10-2 eVfs- 1.441(1.031) eV, and / = 0.15(0.10)TWcm-2 for the first (second) pulse. The two pulses are centered at t = 14.5 fs and t2 = 235.8 fs, respectively. Both of them have a temporal width i = 20 fs. (See color insert.) Taken from Ref. [37]. Figure 39. Pump-dump control of NaK molecule by using two quadratically chirped pulses. The initial state taken as the ground vibrational eigenstate of the ground state X is excited by a quadratically chirped pulse to the excited state A. This excited wavepacket is dumped at the outer turning point at t 230 fs by the second quadratically chirped pulse. The laser parameters used are = 2.75(1.972) X 10-2 eVfs- 1.441(1.031) eV, and / = 0.15(0.10)TWcm-2 for the first (second) pulse. The two pulses are centered at t = 14.5 fs and t2 = 235.8 fs, respectively. Both of them have a temporal width i = 20 fs. (See color insert.) Taken from Ref. [37].
Figure 40. Pump-dump control of NaK by using two quadraticaUy chirped pulses. The initial state and the first step of pump are the same as in Fig. 39. The excited wave packet is now dumped at R 6.5cio on the way to the outer turning point. The parameters of the second pulse are a ) = 1.929 X 10 eVfs , = 1.224eV, and I = 0.lOTWcm . The second pulse is centered at... Figure 40. Pump-dump control of NaK by using two quadraticaUy chirped pulses. The initial state and the first step of pump are the same as in Fig. 39. The excited wave packet is now dumped at R 6.5cio on the way to the outer turning point. The parameters of the second pulse are a ) = 1.929 X 10 eVfs , = 1.224eV, and I = 0.lOTWcm . The second pulse is centered at...
If we consider the limiting case where p=0 and q O, i.e., the case where there are no unknown parameters and only some of the initial states are to be estimated, the previously outlined procedure represents a quadratically convergent method for the solution of two-point boundary value problems. Obviously in this case, we need to compute only the sensitivity matrix P(t). It can be shown that under these conditions the Gauss-Newton method is a typical quadratically convergent "shooting method." As such it can be used to solve optimal control problems using the Boundary Condition Iteration approach (Kalogerakis, 1983). [Pg.96]


See other pages where Initial state control is mentioned: [Pg.508]    [Pg.508]    [Pg.509]    [Pg.523]    [Pg.523]    [Pg.524]    [Pg.361]    [Pg.361]    [Pg.369]    [Pg.20]    [Pg.20]    [Pg.147]    [Pg.147]    [Pg.151]    [Pg.508]    [Pg.508]    [Pg.509]    [Pg.523]    [Pg.523]    [Pg.524]    [Pg.361]    [Pg.361]    [Pg.369]    [Pg.20]    [Pg.20]    [Pg.147]    [Pg.147]    [Pg.151]    [Pg.263]    [Pg.269]    [Pg.276]    [Pg.273]    [Pg.50]    [Pg.367]    [Pg.359]    [Pg.24]    [Pg.8]    [Pg.263]    [Pg.265]    [Pg.276]    [Pg.276]    [Pg.277]    [Pg.277]    [Pg.278]    [Pg.46]    [Pg.47]    [Pg.351]    [Pg.200]   
See also in sourсe #XX -- [ Pg.148 , Pg.151 ]




SEARCH



Initial state

Initiation control

© 2024 chempedia.info