Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy carbon monoxide molecules

Structural sensitivity of the catalytic reactions is one of the most important problems in heterogeneous catalysis [1,2]. It has been rather thoroughly studied for metals, while for oxides, especially for dispersed ones, situation is far less clear due to inherent complexity of studies of their bulk and surface atomic structure. In last years, successful development of such methods as HREM and STM along with the infrared spectroscopy of test molecules has formed a sound bases for elucidating this problem in the case of oxides. In the work presented, the results of the systematic studies of the bulk/surface defect structure of the oxides of copper, iron, cobalt, chromium, manganese as related to structural sensitivity of the reactions of carbon monoxide and hydrocarbons oxidation are considered. [Pg.1155]

Figure 5 shows the SFG vibrational spectra of carbon monoxide obtained at 10 -700 Torr of CO and at 295 K. When the clean Pt(lll) surface was exposed to 10 L (1 L=10 Torr sec) of CO in UHV, two peaks at 1845 cm and 2095 cm were observed which are characteristic of CO adsorbed at bridge and atop sites. LEED revealed that a c(4 X 2) structure was formed in which an equal number of carbon monoxide molecules occupied atop and bridge sites [15]. Such results are in agreement with previous HREELS [16] and reflection-absoiption infrared spectroscopy (RAIRS) [17] studies. ITie much higher relative intensity of atop bonded CO to bridge bonded CO in the SFG spectra is due to the specific selection rule for the SFG process [18]. As mentioned earlier, SFG is a second order, nonlinear optical technique and requires the vibrational mode under investigation to be both IR and Raman active, so that the SFG intensity includes contributions from the Raman polarizability as well as the IR selection mle for the normal mode. [Pg.41]

Yeom and Frei [96] showed that irradiation at 266 nm of TS-1 loaded with CO and CH3OH gas at 173 K gave methyl formate as the main product. The photoreaction was monitored in situ by FT-IR spectroscopy and was attributed to reduction of CO at LMCT-excited framework Ti centers (see Sect. 3.2) under concurrent oxidation of methanol. Infrared product analysis based on experiments with isotopically labeled molecules revealed that carbon monoxide is incorporated into the ester as a carbonyl moiety. The authors proposed that CO is photoreduced by transient Ti + to HCO radical in the primary redox step. This finding opens up the possibility for synthetic chemistry of carbon monoxide in transition metal materials by photoactivation of framework metal centers. [Pg.55]

Carbon monoxide on metals forms the best-studied adsorption system in vibrational spectroscopy. The strong dipole associated with the C-O bond makes this molecule a particularly easy one to study. Moreover, the C-0 stretch frequency is very informative about the direct environment of the molecule. The metal-carbon bond, however, falling at frequencies between 300 and 500 cm1, is more difficult to measure with infrared spectroscopy. First, its detection requires special optical parts made of Csl, but even with suitable equipment the peak may be invisible because of absorption by the catalyst support. In reflection experiments on single crystal surfaces the metal-carbon peak is difficult to obtain because of the low sensitivity of RAIRS at low frequencies [12,13], EELS, on the other hand, has no difficulty in detecting the metal-carbon bond, as we shall see later on. [Pg.225]

Infrared spectroscopy can be used to obtain a great deal of information about zeolitic materials. As mentioned earlier, analysis of the resulting absorbance bands can be used to get information about the structure of the zeolite and other functional groups present due to the synthesis and subsequent treatments. In addition, infrared spectroscopy can be combined with adsorption of weak acid and base probe molecules to obtain information about the acidity and basicity of the material. Other probe molecules such as carbon monoxide and nitric oxide can be used to get information about the oxidation state, dispersion and location of metals on metal-loaded zeolites. [Pg.113]

The application of IR spectroscopy to catalysis and surface chemistry was later developed in the fifties by Eischens and coworkers at Texaco laboratories (Beacon, New York) in the USA [7] and, almost simultaneously, by Sheppard and Yates at Cambridge University in the UK [8]. Mapes and Eischens published the spectra of ammonia chemisorbed on a silica-alumina cracking catalyst in 1954 [6], showing the presence of Lewis acid sites and also the likely presence of Br0nsted acid sites. Eischens, Francis and Pliskin published the IR spectra of carbon monoxide adsorbed on nickel and its oxide in 1956 [9]. Later they presented the results of an IR study of the catalyzed oxidation of CO on nickel at the First International Congress on Catalysis, held in Philadelphia in 1956 [10]. Eischens and Pliskin also published a quite extensive review on the subject of Infrared spectra of adsorbed molecules in Advances in Catalysis in 1958, where data on hydrocarbons, CO, ammonia and water adsorbed on metals, oxides and minerals were reviewed [11]. These papers evidence clearly the two tendencies observed in subsequent spectroscopic research in the field of catalysis. They are the use of probes to test the surface chemistry of solids and the use of spectroscopy to reveal the mechanism of the surface reactions. They used an in situ cell where the catalyst sample was... [Pg.96]

The electrocatalytic oxidation of ethanol has been investigated for many years on different platinum-based electrodes, including Pt/X alloys (with X = Ru, Sn, Mo, etc ), and dispersed nanocatalysts. Pme platinum smooth electrodes are rapidly poisoned by some strongly adsorbed intermediates, such as carbon monoxide, resulting from the dissociative chemisorption of the molecule, as shown by the first experiments in infrared reflectance spectroscopy (EMIRS). Both kinds of adsorbed CO, either linearly-bonded or bridge-bonded to the platinum surface, are observed. Besides, oth-... [Pg.452]

Adsorbed carbon monoxide is a matter of special interest in ultrahigh vacuum as well as in electrochemical systems. CO has been used as probe molecule in surface vibrational spectroscopy. For important reviews of CO adsorbed from the gas phase, see [21, 42, 45, 46]. The rather large dynamic dipole moment (9///0Q) of adsorbed CO is particulary suited for infrared spectroscopy at electrochemical interfaces, where submonolayer amounts of species must be observed in the presence of IR-active solution compontents. [Pg.147]

Nitrogen and carbon monoxide are both candidates as small probe molecules which may interact only with strong acid sites in zeolites and which can be observed by infrared spectroscopy. As an illustration of this method, consider the recent work of Wakabayashi et al. on N2 adsorbed in H-mordenite [29], HY and HZSM-5 [30], References to infrared spectra of adsorbed CO include [31-33]. [Pg.110]

Optical spectroscopy has been applied with a good deal of success to the identification of chemisorbed species and of the nature of the surface bond. Infrared spectra have been most useful in studies of simple molecules, such as carbon monoxide adsorbed on platinum or nickel, and ultraviolet spectra for the characterisation of more complex interipediates, such as carbonium ions and ion radicals. The frequency of the adsorption band (or bands) often serves to identify the adsorbed species by comparison with spectra of known compounds. Quantitative information may then in principle be obtained by measuring the area under the adsorp-... [Pg.216]

Vibrational spectroscopy, especially in the infrared, provides a useful method of investigating the structures of carbonyl complexes. Moreover by providing information about bond force constants and hence bond orders within a molecule, insight can be gained into the relative donor/acceptor properties of carbon monoxide and other ligands. [Pg.158]

CONTEXT Carbon monoxide, a toxic byproduct of incomplete combustion, may be detected in the atmosphere using infrared absorption spectroscopy, which stimulates the C — O stretching motion. This transition is allowed because CO is a polar molecule, and stretching the bond changes the dipole moment (i. e., the dipole derivative is not zero, Section 8.4). [Pg.434]


See other pages where Infrared spectroscopy carbon monoxide molecules is mentioned: [Pg.241]    [Pg.237]    [Pg.15]    [Pg.113]    [Pg.253]    [Pg.252]    [Pg.2]    [Pg.369]    [Pg.287]    [Pg.48]    [Pg.414]    [Pg.808]    [Pg.237]    [Pg.122]    [Pg.137]    [Pg.143]    [Pg.4955]    [Pg.161]    [Pg.163]    [Pg.169]    [Pg.132]    [Pg.282]    [Pg.73]    [Pg.266]    [Pg.4954]    [Pg.166]    [Pg.28]    [Pg.39]    [Pg.156]    [Pg.380]    [Pg.806]    [Pg.238]    [Pg.510]    [Pg.169]    [Pg.2275]   
See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Infrared molecules

Infrared spectroscopy monoxide

Molecule 60-carbon

Molecule spectroscopy

Spectroscopy carbon

© 2024 chempedia.info