Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inductivity coupled plasma

The inductively coupled plasma [19] is excited by an electric field which is generated by an RF current in an inductor. The changing magnetic field of this inductor induces an electric field in which tire plasma electrons are accelerated. The helicon discharge [20] is a special type of inductively coupled RF discharge. [Pg.2803]

ELECTROTHERMAL (FURNACE) ATOMIC ABSORPTION, ARGON INDUCTION COUPLED PLASMA, AND PLASMA ATOMIC FLUORESCENCE... [Pg.690]

The section on Spectroscopy has been retained but with some revisions and expansion. The section includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy, and X-ray spectrometry. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-19, and phosphoms-31. [Pg.1284]

If a sample solution is introduced into the center of the plasma, the constituent molecules are bombarded by the energetic atoms, ions, electrons, and even photons from the plasma itself. Under these vigorous conditions, sample molecules are both ionized and fragmented repeatedly until only their constituent elemental atoms or ions survive. The ions are drawn off into a mass analyzer for measurement of abundances and mJz values. Plasma torches provide a powerful method for introducing and ionizing a wide range of sample types into a mass spectrometer (inductively coupled plasma mass spectrometry, ICP/MS). [Pg.87]

Because light emitted from inductively coupled plasma torches is characteristic of the elements present, the torches were originally introduced for instruments that optically measured the frequencies and intensities of the emitted light and used them, rather than ions, to estimate the amounts and types of elements present (inductively coupled plasma atomic emission spectroscopy. [Pg.87]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

Samples to be examined by inductively coupled plasma and mass spectrometry (ICP/MS) are commonly in the form of a solution that is transported into the plasma flame. The thermal mass of the flame is small, and ingress of excessive quantities of extraneous matter, such as solvent, would cool the flame and might even extinguish it. Even cooling the flame reduces its ionization efficiency, with concomitant effects on the accuracy and detection limits of the ICP/MS method. Consequently, it is necessary to remove as much solvent as possible which can be done by evaporation off-line or done on-line by spraying the solution as an aerosol into the plasma flame. [Pg.137]

Accurate, precise isotope ratio measurements are important in a wide variety of applications, including dating, examination of environmental samples, and studies on drug metabolism. The degree of accuracy and precision required necessitates the use of special isotope mass spectrometers, which mostly use thermal ionization or inductively coupled plasma ionization, often together with multiple ion collectors. [Pg.369]

This is the basic process in an inductively coupled plasma discharge (ICP). The excited ions can be examined by observing the emitted light or by mass spectrometry. Since the molecules have been broken down into their constituent atoms (as ions) including isotopes, these can be identified and quantified by mass spectrometry, as happens with isotope ratio measurements. [Pg.388]

Near the outlet from the torch, at the end of the concentric tubes, a radio high-frequency coil produces a rapidly oscillating electromagnetic field in the flowing gas. The applied high-frequency field couples inductively with the electric fields of the electrons and ions in the plasma, hence the name inductively coupled plasma or ICP. [Pg.395]

Inductively coupled plasmas are used to obtain the ions needed to measure either relative concentrations (amounts) of the various elements in a sample or to obtain accurate elemental isotope ratios. [Pg.395]

Samples to be examined by inductively coupled plasma and mass spectrometry (ICP/MS) are frequently in the form of a solution of an analyte in a solvent that may be aqueous or organic. [Pg.399]

Thermal ionization. Takes place when an atom or molecule interacts with a heated surface or is in a gaseous environment at high temperatures. Examples of the latter include a capillary arc plasma, a microwave plasma, or an inductively coupled plasma. [Pg.439]

ICP/AES. inductively coupled plasma and atomic-emission spectroscopy used as a combined technique... [Pg.445]

Montaudo, G. and Lattimer, R.P., Mass Spectrometry of Polymers, CRC Press, Boca Raton, FL, 2001. Montaser, A., Inductively Coupled Plasma Mass Spectrometry, Wiley, Chichester, U.K., 1998. [Pg.451]

Taylor, H.E., Inductively Coupled Plasma-Mass Spectroscopy, Academic Press, New York, 2000. [Pg.452]

Wangzhao, Z., Advanced Inductively Coupled Plasma Mass Spectrometry Analysis of Rare Elements, Balkema Publishers, 1999. [Pg.452]

Inductively coupled plasma atomic emission spectroscopy... [Pg.66]

Emission spectroscopy is a very useful analytical technique in determining the elemental composition of a sample. The emission may be produced in an electrical arc or spark but, since the mid-1960s, an inductively coupled plasma has increasingly been used. [Pg.66]

For inductively coupled plasma atomic emission spectroscopy (ICP-AES) the sample is normally in solution but may be a fine particulate solid or even a gas. If it is a solution, this is nebulized, resulting in a fine spray or aerosol, in flowing argon gas. The aerosol is introduced into a plasma torch, illustrated in Figure 3.21. [Pg.66]

Figure 3.21 A plasma torch for inductively coupled plasma atomic emission spectroscopy... Figure 3.21 A plasma torch for inductively coupled plasma atomic emission spectroscopy...
A wider range of elements is covered by ICT-AES than by atomic absorption spectroscopy. All elements, except argon, can be determined with an inductively coupled plasma, but there are some difficulties associated with He, Ne, Kr, Xe, F, Cl, Br, O and N. [Pg.67]

FURNACES,ELECTRIC - INDUCTIONFURNACES] (Vol 12) Inductively coupled plasma... [Pg.512]

To measure trace metals to the levels required in the guidelines involves the use of state-of-the-art instmmentation such as inductively coupled plasma/mass spectrometry (icp/ms). [Pg.447]

Gold is a useflil caUbration standard for this method (see Radioactive tracers). Whereas similar sensitivities can be achieved by inductively coupled plasma mass spectrometry (qv), the latter requires more extensive sample preparation to overcome interference by other metals such as copper (64). [Pg.381]

Oxygen and nitrogen also are deterrnined by conductivity or chromatographic techniques following a hot vacuum extraction or inert-gas fusion of hafnium with a noble metal (25,26). Nitrogen also may be deterrnined by the Kjeldahl technique (19). Phosphoms is determined by phosphine evolution and flame-emission detection. Chloride is determined indirecdy by atomic absorption or x-ray spectroscopy, or at higher levels by a selective-ion electrode. Fluoride can be determined similarly (27,28). Uranium and U-235 have been determined by inductively coupled plasma mass spectroscopy (29). [Pg.443]

Plasma sources are also being iatroduced to produce plasmas at lower pressures and process temperatures. Inductively coupled plasma (ICP) and transformer-coupled plasma (TCP) are among the more commonly used sources, operating below 2.6 Pa (20 mTorr) (42). Low temperature RIE processiag operates between 26—67 Pa (200—500 mTorr). [Pg.353]

Small concentrations of iron can also be deterrnined by flame atomic absorption and inductively coupled plasma emission spectroscopies (see... [Pg.444]


See other pages where Inductivity coupled plasma is mentioned: [Pg.4]    [Pg.435]    [Pg.435]    [Pg.39]    [Pg.97]    [Pg.353]    [Pg.397]    [Pg.468]    [Pg.512]    [Pg.449]   


SEARCH



Coupled Plasma

Induction-coupled plasma

Inductive coupled plasma

Inductive coupling

Inductively couple plasma

Inductively coupled

© 2024 chempedia.info