Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

INDEX physical properties

Gmelin contains over 800 different chemical and physical property fields, and a detailed index of the original literature. Broad categories of data found in the database include ... [Pg.248]

In general, the first step in virtual screening is the filtering by the application of Lipinski s Rule of Five [20]. Lipinski s work was based on the results of profiling the calculated physical property data in a set of 2245 compounds chosen from the World Drug Index. Polymers, peptides, quaternary ammonium, and phosphates were removed from this data set. Statistical analysis of this data set showed that approximately 90% of the remaining compounds had ... [Pg.607]

Because of the chemical inertness of the paraffin hydrocarbons and of the closely related cycZoparaffins, no satisfactory crystalline derivatives can be prepared. Reliance is therefore placed upon the physical properties (boding point, density, and refractive index) of the redistilled samples. These are collected together in Table III,6. [Pg.234]

Chakactkrisation of Unsaturatkd Aliphatic Hydrocarbons Unlike the saturated hydrocarbons, unsaturated aliphatic hydrocarbons are soluble in concentrated sulphuric acid and exhibit characteristic reactions with dUute potassium permanganate solution and with bromine. Nevertheless, no satisfactory derivatives have yet been developed for these hydrocarbons, and their characterisation must therefore be based upon a determination of their physical properties (boiling point, density and refractive index). The physical properties of a number of selected unsaturated hydrocarbons are collected in Table 111,11. [Pg.241]

Di- and poly-halogenated aliphatic hydrocarbons. No general procedure can be given for the preparation of derivatives of these compounds. Reliance must be placed upon their physical properties (b.p., density and refractive index) and upon any chemical reactions which they undergo. [Pg.292]

The low reactivity of aliphatic ethers renders the problem of the preparation of suitable crystalline derivatives a somewhat difficult one. Increased importance is therefore attached to the physical properties (boding point, density and refractive index) as a means for providing preliminary information. There are, however, two reactions based upon the cleavage of the ethers which are useful for characterisation. [Pg.315]

Most aliphatic nitro compounds are liquids the physical properties (boiling point, density and refractive index) therefore provide valuable information for purposes of identification. [Pg.532]

Location of the compound within a class (or homologous series) of compounds. Reference to the literature or to tables of the physical properties of the class (or classes) of organic compounds to which the substance has been assigned, will generally locate a number of compounds which boil or melt within 6° of the value observed for the unknown. If other physical properties e.g., refractive index and density for a hquid) are available, these will assist in deciding whether the unknown is identical with one of the known compounds. In general, however, it is more convenient in practice to prepare one, but preferably two, crystalhne derivatives of the substance. [Pg.1027]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

Dichloroacetic acid [79-43-6] (CI2CHCOOH), mol wt 128.94, C2H2CI2O2, is a reactive intermediate in organic synthesis. Physical properties are mp 13.9°C, bp 194°C, density 1.5634 g/mL, and refractive index 1.4658, both at 20°C. The Hquid is totally miscible in water, ethyl alcohol, and ether. Dichloroacetic acid K = 5.14 X 10 ) is a stronger acid than chloroacetic acid. Most chemical reactions are similar to those of chloroacetic acid, although both chlorine... [Pg.88]

Chloroacetyl chloride [79-04-9] (CICH2COCI) is the corresponding acid chloride of chloroacetic acid (see Acetyl chloride). Physical properties include mol wt 112.94, C2H2CI2O, mp —21.8 C, bp 106°C, vapor pressure 3.3 kPa (25 mm Hg) at 25°C, 12 kPa (90 mm Hg) at 50°C, and density 1.4202 g/mL and refractive index 1.4530, both at 20°C. Chloroacetyl chloride has a sharp, pungent, irritating odor. It is miscible with acetone and bensene and is initially insoluble in water. A slow reaction at the water—chloroactyl chloride interface, however, produces chloroacetic acid. When sufficient acid is formed to solubilize the two phases, a violent reaction forming chloroacetic acid and HCl occurs. [Pg.89]

The procedure begins by using a material factor that is a function only of the physical properties of the chemical in use. The more hazardous the material, the higher the material factor. A table containing factors for common materials is provided with the Index. Additionally, a procedure is detailed for determining the material factor for unlisted materials. [Pg.470]

Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44). Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44).
OtherD t b ses. Available from different vendors (Table 8). For example, the researcher can obtain physical properties by usiag the Merck Index Online or the Dictionary of Organic Compounds available by Chapman and Hall Chemical Database. In DIALOG, numeric databases are collected under the name of CHEMPROP. [Pg.120]

Physical Properties. Properties of some alkyl peroxyesters are Hsted in Table 13 and the properties of some alkyl areneperoxysulfonates are given in Table 14. Mass spectra (226), total energies, and dipole moments (227) oxygen—oxygen bond-dissociation energies (44,228) and boiling points, melting points, densities, and refractive indexes (44,168,213) have been reported for a variety of tert-huty peroxycarboxylates. [Pg.127]

Other terms relating to physical properties include viscosity refractive index pour point, ie, the lowest temperature at which the oil flows flash point, ie, the temperature at which the oil ignites and aniline point, ie, the minimum temperature at which equal volumes of oil and aniline are completely miscible. These are determined under defined conditions estabHshed by ASTM. [Pg.158]

Capillary gc/ms, hplc, nmr, ir, and uv are all analytical methods used by the terpene chemist with a good Hbrary of reference spectra, capillary gc/ms is probably the most important method used in dealing with the more volatile terpenes used in the davor and fragrance industry (see Flavors and spices). The physical properties of density, refractive index, boiling point, melting point of derivatives, and specific rotation are used less frequendy but are important in defining product specifications. [Pg.410]

The commercially important anatase and mtile both have tetragonal stmctures consequentiy, the values of physical properties such as refractive index and electrical conductivity depend on whether these are being measured parallel or perpendicular to the principal, ie, axis. However, in most appHcations, this distinction is lost because of random orientation of a large number of small crystals. It is thus the mean value that is significant. Representative physical properties are coUected in. Table 6. [Pg.120]

The main characteristics and physical properties of the chlorophenols are brought together in Table 1. With the exception of o-chlorophenol, they are all sohds at room temperature. The refractive indexes of the monochlorophenols, C H CIO, are as follows ortho, 1.5524 meta, 1.5565 para, 1.5579. The piC values of chlorophenols depend on the number and the position of the substituents. [Pg.78]


See other pages where INDEX physical properties is mentioned: [Pg.35]    [Pg.701]    [Pg.178]    [Pg.1067]    [Pg.1081]    [Pg.84]    [Pg.163]    [Pg.458]    [Pg.282]    [Pg.283]    [Pg.258]    [Pg.288]    [Pg.312]    [Pg.117]    [Pg.117]    [Pg.120]    [Pg.327]    [Pg.191]    [Pg.259]    [Pg.543]    [Pg.5]    [Pg.475]    [Pg.60]    [Pg.60]    [Pg.248]    [Pg.317]    [Pg.419]    [Pg.461]    [Pg.189]    [Pg.83]    [Pg.458]   
See also in sourсe #XX -- [ Pg.192 ]

See also in sourсe #XX -- [ Pg.192 ]

See also in sourсe #XX -- [ Pg.197 , Pg.198 ]




SEARCH



INDEX physical

INDEX physics

Property index

© 2024 chempedia.info