Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impurities calcination

Cementstone is an impure (usually argillaceous) limestone, possessing the ideal balance of siUca, alumina, and calcium carbonate for Portiand cement (qv) manufacture. When calcined it produces a hydrauHc cementing material. [Pg.163]

The chemical and physical properties of limestone vary tremendously, owing to the nature and quantity of impurities present and the texture, ie, crystallinity and density. These same factors also exert a marked effect on the properties of the limes derived from the diverse stone types. In addition, calcination and hydration practices can profoundly influence the properties of lime. [Pg.166]

Luminescence. Limestone possesses only limited luminescent qualities, ranging from very faint or none with the impure types. However, quicklime is very luminescent at calcining temperatures, hence the term limelight. [Pg.166]

In order to make an efficient Y202 Eu ", it is necessary to start with weU-purifted yttrium and europium oxides or a weU-purifted coprecipitated oxide. Very small amounts of impurity ions, particularly other rare-earth ions, decrease the efficiency of this phosphor. Ce " is one of the most troublesome ions because it competes for the uv absorption and should be present at no more than about one part per million. Once purified, if not already coprecipitated, the oxides are dissolved in hydrochloric or nitric acid and then precipitated with oxaflc acid. This precipitate is then calcined, and fired at around 800°C to decompose the oxalate and form the oxide. EinaHy the oxide is fired usually in air at temperatures of 1500—1550°C in order to produce a good crystal stmcture and an efficient phosphor. This phosphor does not need to be further processed but may be milled for particle size control and/or screened to remove agglomerates which later show up as dark specks in the coating. [Pg.290]

Alumina. A pure although not necessarily a refractory grade of alumina is obtained from bauxite by the Bayer process. In this process, the gibbsite from the bauxite is dissolved in a caustic soda solution and thus separated from the impurities. Alumina, calcined, sintered, or fused, is a stable and extremely versatile material used for a variety of heavy industrial, electronic, and technical appHcations. [Pg.25]

The red cake can be further purified by dissolving it in an aqueous solution of Na2C02- The iron, aluminum, and silicon impurities precipitate from the solution upon pH adjustment. Ammonium metavanadate then precipitates upon the addition of NH Cl and is calcined to give vanadium pentoxide of greater than 99.8% purity. [Pg.382]

MetaUic impurities in beryUium metal were formerly determined by d-c arc emission spectrography, foUowing dissolution of the sample in sulfuric acid and calcination to the oxide (16) and this technique is stUl used to determine less common trace elements in nuclear-grade beryUium. However, the common metallic impurities are more conveniently and accurately determined by d-c plasma emission spectrometry, foUowing dissolution of the sample in a hydrochloric—nitric—hydrofluoric acid mixture. Thermal neutron activation analysis has been used to complement d-c plasma and d-c arc emission spectrometry in the analysis of nuclear-grade beryUium. [Pg.69]

Air pollution problems and labor costs have led to the closing of older pyrometaHurgical plants, and to increased electrolytic production. On a worldwide basis, 77% of total 2inc production in 1985 was by the electrolytic process (4). In electrolytic 2inc plants, the calcined material is dissolved in aqueous sulfuric acid, usually spent electrolyte from the electrolytic cells. Residual soHds are generally separated from the leach solution by decantation and the clarified solution is then treated with 2inc dust to remove cadmium and other impurities. [Pg.386]

Cement. Portland cement, a mixture of calcium siUcate and calcium aluminate minerals, is produduced by the calcination of argillaceous limestone or mixtures of limestone and clay (see Cement). Although other clays can be used, ka olin is preferred because of its alumina and siUca content and low level of impurities. It is especially desirable in the manufacture of white cement and other types requiring careful control of chemical composition. Air-floated ka olin, because of its low cost, is usually used. [Pg.210]

Alumina (AfOf. Alumina is produced by calcining either bauxite or aluminum hydroxide in rotary Idlns at temperatures from 1250 to 1600 K. In obtaining the highest-purity alumina, the bauxite is digested with alkah to remove impurities the resultant aluminum hydroxide [AlgfOH) ], of approximately 200-mesh size, is then calcined in rotaiy Idlns at 1350 K. [Pg.1207]

Typical applications in the chemical field (Beaver, op. cit.) include detarring of manufactured gas, removal of acid mist and impurities in contact sulfuric acid plants, recovery of phosphoric acid mists, removal of dusts in gases from roasters, sintering machines, calciners, cement and lime Idlns, blast furnaces, carbon-black furnaces, regenerators on fluid-catalyst units, chemical-recoveiy furnaces in soda and sulfate pulp mills, and gypsum kettles. Figure 17-74 shows a vertical-flow steel-plate-type precipitator similar to a type used for catalyst-dust collection in certain fluid-catalyst plants. [Pg.1616]

Aluminium fluoride (anhydrous) [7784-18-4] M 84.0, m 250°. Technical material may contain up to 15% alumina, with minor impurities such as aluminium sulfate, cryolite, silica and iron oxide. Reagent grade AIF3 (hydrated) contains only traces of impurities but its water content is very variable (may be up to 40%). It can be dried by calcining at 600-800° in a stream of dry air (some hydrolysis occurs), followed by vacuum distn at low pressure in a graphite system, heated to approximately 925° (condenser at 900°) [Henry and Dreisbach J Am Chem Soc 81 5274 1959]. [Pg.391]

Uchino and Azuma [504] developed and proposed a two-step calcination process of tantalum and niobium hydroxides to obtain oxides. The first treatment is recommended to be performed at 500-700°C, and the second- at 750-1000°C. It is reported that the above method ensures the production of oxides that contain only negligible concentrations of fluorine and silicon impurities. [Pg.301]

The precipitated precursor can be dissolved and re-crystallized from fluorine-free solutions. This provides excellent conditions for deep purification of the material and reduction of problematic impurities such as titanium, fluorine, etc. Peroxometalates decompose at relatively low temperatures forming tantalum or niobium oxides containing small amount of absorbed water. The absorbed water separation is achieved by further thermal treatment - drying and calcination - of the product ... [Pg.308]

Thermal analysis has been widely and usefully applied in the solution of technical problems concerned with the commercial exploitation of natural dolomite including, for example, the composition of material in different deposits, the influence of impurities on calcination temperatures, etc. This approach is not, however, suitable for the reliable determination of kinetic parameters for a reversible reaction (Chap. 3, Sect. 6). [Pg.242]

Impure plutonium oxide residues are dissolved in 12M HN03-0.1M HF under refluxing conditions, and then the plutonium is recovered and purified by anion exchange. Plutonium is leached from other residues, such as metal and glass, and is also purified by anion exchange. The purified plutonium eluate from the anion exchange process is precipitated with hydrogen peroxide. The plutonium peroxide is calcined to the oxide, and the plutonium oxide is fluorinated. The plutonium tetrafluoride is finally reduced to the metal with calcium. [Pg.349]

Plutonium Oxide Dissolution. All four sites dissolve impure PuO, residues in concentrated HND3 (10 to 14M) containing HF (<0.3M). Whereas material calcined at temperatures of... [Pg.355]


See other pages where Impurities calcination is mentioned: [Pg.40]    [Pg.40]    [Pg.2784]    [Pg.27]    [Pg.11]    [Pg.239]    [Pg.500]    [Pg.543]    [Pg.165]    [Pg.171]    [Pg.380]    [Pg.174]    [Pg.174]    [Pg.343]    [Pg.348]    [Pg.349]    [Pg.168]    [Pg.131]    [Pg.159]    [Pg.25]    [Pg.25]    [Pg.26]    [Pg.124]    [Pg.392]    [Pg.401]    [Pg.422]    [Pg.420]    [Pg.458]    [Pg.57]    [Pg.436]    [Pg.512]    [Pg.110]    [Pg.242]    [Pg.119]   
See also in sourсe #XX -- [ Pg.347 ]




SEARCH



Calcinators

Calcine

Calcined

Calciner

Calciners

Calcining

© 2024 chempedia.info