Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immobilized characterization

Blanco, R.M., Terreros, P., Fernandez-Perez, M., Otero, C. and az-Gonzalez, G. (2004) Functionalization of mesoporous silica for lipase immobilization Characterization of the support and the catalysts. Journal of Molecular Catalysis B-Enzymatic, 30, 83-93. [Pg.110]

A.K. Singh, A.W. Flounders, J.V. Volponi, C.S. Ashley, K. Wally, and J.S. Schoeniger, Development of sensors for direct detection of organophosphates. Part I immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosens. Bioelectron. 14, 703-713 (1999). [Pg.550]

Y. Zhou, O. Andersson, P. Lindberg and Liedberg, B. (2004) Protein microarrays on carboxymethylated dextran hydrogels immobilization, characterization and application. Microchim. Acta., 147, 21-30. [Pg.225]

Rhodacarborane catalysts have been immobilized by attachment to polystyrene beads with appreciable retention of catalytic activity (227). A 13-vertex /oj iJ-hydridorhodacarborane has also been synthesized and demonstrated to possess catalytic activity similar to that of the icosahedral species (228). Ak-oxidation of closo- >(2- P((Z [) 2 - i- > l[l-Bih(Z, results in a brilliant purple dimer. This compound contains two formal Rh " centers linked by a sigma bond and a pak of Rh—H—B bridge bonds. A number of similar dimer complexes have been characterized and the mechanism of dimer formation in these rhodacarborane clusters have been studied in detail (229). [Pg.249]

The Michaehs-Menten equation and other similar nonhnear expressions characterize immobihzed enzyme kinetics. Therefore, for a spherical porous carrier particle with enzyme molecules immobilized on its external as well as internal surfaces, material balance of the substrate will result in the following ... [Pg.2150]

The immobilization of reagents onto sorbents often results in increase of their sensitivity and, in some cases, selectivity, allows to simplify the analysis and to avoid necessity of use of toxic organic solvents. At the same time silicas are characterized by absence of swelling, thenual and chemical stability, rapid achievement of heterogeneous equilibrium. [Pg.60]

The reactivation of enzymes (after their partial inactivation in an acid medium) upon passing into a medium of pH 8 is also of great importance for oral use (Fig. 25). Enzymes immobilized in crosslinked polyelectrolytes are characterized by a structural memory even after considerable inactivation. Under changed conditions, this leads to a considerable or almost complete reactivation of the enzyme, whereas in the reactivation of a free enzyme in solution under similar conditions the enzymatic activity is restored on a lower level. [Pg.35]

Dynamic light-scattering experiments or the analysis of some physicochemical properties have shown that finite amounts of formamide, A-methylformamide, AA-dimethyl-formamide, ethylene glycol, glycerol, acetonitrile, methanol, and 1,2 propanediol can be entrapped within the micellar core of AOT-reversed micelles [33-36], The encapsulation of formamide and A-methylformamide nanoclusters in AOT-reversed micelles involves a significant breakage of the H-bond network characterizing their structure in the pure state. Moreover, from solvation dynamics measurements it was deduced that the intramicellar formamide is nearly completely immobilized [34,35],... [Pg.476]

The a -, /z-, and a-conotoxins are the best characterized of the peptides isolated from Conus venoms so far. However, a large number of other peptides are found in these venoms. These comprise both paralytic toxins to immobilize the prey of the cone snail, and other biologically active peptides which are not themselves directly paralytic. Only the briefest overview of these peptide components will be presented here. [Pg.271]

The initial hurdle to overcome in the biosensor application of a nucleic acid is that involving its stable attachment on a transducing element which commonly includes a metallic electrode. In the first part of this chapter, we wish to introduce our approach for DNA immobilization (Scheme 1). A detailed characterization of the immobilization chemistry is also presented. In the second part, we follow the development of work from our laboratory on chemical sensor applications of the DNA-modified electrode involving a biosensor for DNA-binding molecules and an electrochemical gene sensor. [Pg.518]

Li, S. and Dass, C., Iron(III)-Immobilized Metal Ion Affinity Chromatography and Mass Spectrometry for the Purification and Characterization of Synthetic Phosphopeptides, Anal. Biochem., 270, 9, 1999. [Pg.137]

In an ideal case the electroactive mediator is attached in a monolayer coverage to a flat surface. The immobilized redox couple shows a significantly different electrochemical behaviour in comparison with that transported to the electrode by diffusion from the electrolyte. For instance, the reversible charge transfer reaction of an immobilized mediator is characterized by a symmetrical cyclic voltammogram ( pc - Epa = 0 jpa = —jpc= /p ) depicted in Fig. 5.31. The peak current density, p, is directly proportional to the potential sweep rate, v ... [Pg.331]

The above example outlines a general problem in immobilized molecular catalysts - multiple types of sites are often produced. To this end, we are developing techniques to prepare well-defined immobilized organometallic catalysts on silica supports with isolated catalytic sites (7). Our new strategy is demonstrated by creation of isolated titanium complexes on a mesoporous silica support. These new materials are characterized in detail and their catalytic properties in test reactions (polymerization of ethylene) indicate improved catalytic performance over supported catalysts prepared via conventional means (8). The generality of this catalyst design approach is discussed and additional immobilized metal complex catalysts are considered. [Pg.268]

The patterned amine materials have been used to construct CGC-inspired sites that were evaluated in the catalytic polymerization of ethylene after activation with MAO. The complexes assembled on a porous silica surface using this methodology are more active than previously reported materials prepared on densely-loaded amine surfaces. This increased activity further suggests the isolated, unique nature of the metal centers. Work is continuing in our laboratory to further characterize the nature of the active sites, as well as to obtain more detailed kinetic data on the catalysts. The patterning methodology is also being applied to the creation of immobilized catalysts for small molecule reactions, such as Heck and Suzuki catalysis. [Pg.277]


See other pages where Immobilized characterization is mentioned: [Pg.2293]    [Pg.2293]    [Pg.535]    [Pg.496]    [Pg.360]    [Pg.361]    [Pg.178]    [Pg.885]    [Pg.169]    [Pg.107]    [Pg.160]    [Pg.125]    [Pg.297]    [Pg.124]    [Pg.266]    [Pg.334]    [Pg.157]    [Pg.206]    [Pg.332]    [Pg.418]    [Pg.523]    [Pg.707]    [Pg.263]    [Pg.438]    [Pg.438]    [Pg.776]    [Pg.534]    [Pg.186]    [Pg.93]    [Pg.138]    [Pg.521]    [Pg.104]    [Pg.119]    [Pg.520]    [Pg.275]   
See also in sourсe #XX -- [ Pg.467 ]




SEARCH



Characterization of immobilized biocatalyst

Enzymes immobilized, characterization

Support characterization, Immobilized

© 2024 chempedia.info