Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immobilization silica-support

Immunosorbents have also found applicability in on-line SPE analysis. An antibody is immobilized on to a silica support and used as an affinity ligand to retain targeted analytes. Components not recognized by the antibody are not retained and some degree of selectivity is attained. Recoveries of 87-103% were obtained for atrazine, simazine, DEA, propazine, and terbuthylazine at the 0.2 xgL concentration level when using immunosorbent SPE (80 mg silica and 2 mg anti-atrazine and anti-chlortoluron antibodies) on-line with LC/APcI-MS however, this method is not applicable to DIA (0% recovery). This compound may be better retained when using an... [Pg.424]

The above example outlines a general problem in immobilized molecular catalysts - multiple types of sites are often produced. To this end, we are developing techniques to prepare well-defined immobilized organometallic catalysts on silica supports with isolated catalytic sites (7). Our new strategy is demonstrated by creation of isolated titanium complexes on a mesoporous silica support. These new materials are characterized in detail and their catalytic properties in test reactions (polymerization of ethylene) indicate improved catalytic performance over supported catalysts prepared via conventional means (8). The generality of this catalyst design approach is discussed and additional immobilized metal complex catalysts are considered. [Pg.268]

In addition to popular mesoporous silica materials, mesoporous silica supports with various morphologies have also been used for protein immobilization. Tang and coworkers synthesized lotus-leaf-like silica flakes with a three-dimensionally connected nanoporous structure and controllable thickness, which were used for immobilization of ribonuclease A [126]. The synthesized silica flakes have a thickness of200 nm, and a diameter of 3 mm, showing a much higher initial adsorbing rate of... [Pg.121]

One of the most promising applications of enzyme-immobilized mesoporous materials is as microscopic reactors. Galameau et al. investigated the effect of mesoporous silica structures and their surface natures on the activity of immobilized lipases [199]. Too hydrophilic (pure silica) or too hydrophobic (butyl-grafted silica) supports are not appropriate for the development of high activity for lipases. An adequate hydrophobic/hydrophilic balance of the support, such as a supported-micelle, provides the best route to enhance lipase activity. They also encapsulated the lipases in sponge mesoporous silicates, a new procedure based on the addition of a mixture of lecithin and amines to a sol-gel synthesis to provide pore-size control. [Pg.141]

Some non-silica sol-gel materials have also been developed to immobilize bioactive molecules for the construction of biosensors and to synthesize new catalysts for the functional devices. Liu et al. [33] proved that alumina sol-gel was a suitable matrix to improve the immobilization of tyrosinase for detection of trace phenols. Titania is another kind of non-silica material easily obtained from the sol-gel process [34, 35], Luckarift et al. [36] introduced a new method for enzyme immobilization in a bio-mimetic silica support. In this biosilicification process precipitation was catalyzed by the R5 peptide, the repeat unit of the silaffin, which was identified from the diatom Cylindrotheca fusiformis. During the enzyme immobilization in biosilicification the reaction mixture consisted of silicic acid (hydrolyzed tetramethyl orthosilicate) and R5 peptide and enzyme. In the process of precipitation the reaction enzyme was entrapped and nm-sized biosilica-immobilized spheres were formed. Carturan et al. [11] developed a biosil method for the encapsulation of plant and animal cells. [Pg.530]

A.K. Singh, A.W. Flounders, J.V. Volponi, C.S. Ashley, K. Wally, and J.S. Schoeniger, Development of sensors for direct detection of organophosphates. Part I immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosens. Bioelectron. 14, 703-713 (1999). [Pg.550]

Various novel imprinting techniques have also been presented recently. For instance, latex particles surfaces were imprinted with a cholesterol derivative in a core-shell emulsion polymerization. This was performed in a two-step procedure starting with polymerizing DVB over a polystyrene core followed by a second polymerization with a vinyl surfactant and a surfactant/cholesterol-hybrid molecule as monomer and template, respectively. The submicrometer particles did bind cholesterol in a mixture of 2-propanol (60%) and water [134]. Also new is a technique for the orientated immobilization of templates on silica surfaces [ 135]. Molecular imprinting was performed in this case by generating a polymer covering the silica as well as templates. This step was followed by the dissolution of the silica support with hydrofluoric acid. Theophylline selective MIP were obtained. [Pg.160]

The use of heterogeneous catalysts in this reaction has also been achieved palladium-montmorillonite clays [93] or palladium/activated carbon [94] in the presence of dppb transformed 2-allylphenols into lactones, the regiose-lectivity of the reaction being largely dependant on the nature of the support. Very recently, palladium complexes immobilized onto silica-supported (polyaminoamido)dendrimers were used as catalysts in the presence of dppb for the cyclocarbonylation of 2-allylphenols, 2-allylanilines, 2-vinylphenols, and 2-vinylanilines affording five-, six-, or seven-membered lactones and lactams. Good conversions are realized and the catalyst can be recycled 3-5 times [95]. [Pg.117]

The first silica-supported CSP with a cinchona alkaloid-derived chromatographic ligand was described by Rosini et al. [20]. The native cinchona alkaloids quinine and quinidine were immobilized via a spacer at the vinyl group of the quinuclidine ring. A number of distinct cinchona alkaloid-based CSPs were subsequently developed by various groups, including derivatives with free C9-hydroxyl group [17,21-27] or esterified C9-hydroxyl [28,29]. All of these CSPs suffered from low enantiose-lectivities, narrow application spectra, and partly limited stability (e.g., acetylated phases). [Pg.3]

In simple experiments, particulate silica-supported CSPs having various cin-chonan carbamate selectors immobilized to the surface were employed in an enantioselective liquid-solid batch extraction process for the enantioselective enrichment of the weak binding enantiomer of amino acid derivatives in the liquid phase (methanol-0.1M ammonium acetate buffer pH 6) and the stronger binding enantiomer in the solid phase [64]. For example, when a CSP with the 6>-9-(tcrt-butylcarbamoyl)-6 -neopentoxy-cinchonidine selector was employed at an about 10-fold molar excess as related to the DNB-Leu selectand which was dissolved as a racemate in the liquid phase specified earlier, an enantiomeric excess of 89% could be measured in the supernatant after a single extraction step (i.e., a single equilibration step). This corresponds to an enantioselectivity factor of 17.7 (a-value in HPLC amounted to 31.7). Such a batch extraction method could serve as enrichment technique in hybrid processes such as in combination with, for example, crystallization. In the presented study, it was however used for screening of the enantiomer separation power of a series of CSPs. [Pg.94]

Chowdhury, M.A.J., Ihara, H., Sagawa, T., and Hirayama, C., Retention versatility of silica-supported comb-shaped crystalline and non-crystalline phases in high-performance liquid chromatography, J. Chromatogr. A, 877, 71, 2000. Chowdhury, M.A., Ihara, H., Sagawa, T., and Hirayama, C., Retention behaviors of polycyclic aromatic hydrocarbons on comb-shaped polymer immobilized-silica in RPLC, J. Liq. Chromatogr. Relat. TechnoL, 23, 2289, 2000. [Pg.292]

Figure 5.17 Structure of the ligand, linker precursor and immobilized ligand assembl)r for silica supports and subsequent functionalization with [Rh(COD)2]Bp4. (Redrawn from Pugin and Blaser [49].)... Figure 5.17 Structure of the ligand, linker precursor and immobilized ligand assembl)r for silica supports and subsequent functionalization with [Rh(COD)2]Bp4. (Redrawn from Pugin and Blaser [49].)...
For this complex, molecular chemistry does not adequately model the surface reactivity and the latter is strongly influenced by the presence of surface hydroxyl groups [22]. The organometallic fragments immobilized on silica have been reacted with trimethylphosphine to afford different silica-supported phosphine complexes of rhodium. The course of the reaction depends strongly on the hydroxyl content of the silica surface [23] (Scheme 7.2). [Pg.295]

Structures of immobilized rhodium complexes on the sihca support have been proposed on the basis of the data obtained from C, P and Si MAS-NMR. NMR spectra of the rhodium-modified solid materials confirmed that trimethylsiloxide ligand was removed from the rhodium coordination sphere during the immobilization process. Formation of a new covalent bond between the rhodium organo-metallic moiety and the silica support occurs, probably with evolution of trimethylsilanol, which is rapidly converted into disiloxane (Me3Si)20. The presence of this molecule in the solution obtained after the silica surface modification process was confirmed by GCMS analysis. [Pg.298]

In a subsequent paper, the authors developed another type of silica-supported dendritic chiral catalyst that was anticipated to suppress the background racemic reaction caused by the surface silanol groups, and to diminish the multiple interactions between chiral groups at the periphery of the dendrimer 91). The silica-supported chiral dendrimers were synthesized in four steps (1) grafting of an epoxide linker on a silica support, (2) immobilization of the nth generation PAMAM dendrimer, (3) introduction of a long alkyl spacer, and (4) introduction of chiral auxiliaries at the periphery of the dendrimer with (IR, 2R)-( + )-l-phenyl-propene oxide. Two families of dendritic chiral catalysts with different spacer lengths were prepared (nG-104 and nG-105). [Pg.144]

A variety of SCS and PCP Pd (II) pincer complexes were prepared and immobilized on polymer or silica supports. (Figure 2 shows supported PCP complexes on poly(norbornene) and silica). Insoluble supports such as mesoporous silica and Merrifield resins along with soluble supports such as poly(norbornene) allowed for generalization of our observations, as all immobilized catalysts behaved similarly. The application of poisoning tests, kinetics studies, filtration tests, and... [Pg.4]


See other pages where Immobilization silica-support is mentioned: [Pg.350]    [Pg.628]    [Pg.350]    [Pg.628]    [Pg.145]    [Pg.246]    [Pg.276]    [Pg.75]    [Pg.642]    [Pg.113]    [Pg.143]    [Pg.548]    [Pg.230]    [Pg.124]    [Pg.436]    [Pg.241]    [Pg.29]    [Pg.32]    [Pg.33]    [Pg.127]    [Pg.26]    [Pg.96]    [Pg.111]    [Pg.124]    [Pg.273]    [Pg.285]    [Pg.461]    [Pg.190]    [Pg.207]    [Pg.457]    [Pg.144]    [Pg.205]    [Pg.501]    [Pg.93]    [Pg.584]    [Pg.586]    [Pg.124]   
See also in sourсe #XX -- [ Pg.172 , Pg.174 , Pg.176 , Pg.181 , Pg.191 , Pg.200 , Pg.204 ]




SEARCH



Immobilization on Silica Supports

Immobilization support

Silica support

Silica, immobilization

© 2024 chempedia.info