Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imine salts from alkynes

CuOTf/PyBox System The first direct asymmetric addition of alkynes to imines, generated from aldehydes and amines in situ, was reported by using copper salts in the presence of chiral PyBox ligand (Scheme 5.2). The products were obtained in good yields and excellent enantioselectivities in most cases. When toluene was used as solvent, up to 93% yield and 99% ee were obtained. Up to 99.5% ee was obtained when the reaction was carried out in 1,2-dichloroethane. The reaction can also be performed in water smoothly, and good enantioselectivities (78-91% ee) were obtained. [Pg.131]

In a similar context Amdtsen developed a new pyrrole synthesis from alkynes, acid chlorides either imines or isoquinolines, based on the reactivity of isocyanides (Scheme 35a) [197]. Although all atoms from the isocyanide are excluded from the final structure, its role in the reaction mechanism is crucial. The process takes place through the activation of the imine (isoquinoline) by the acid chloride to generate the reactive M-acyliminium salt, which is then attacked by the isocyanide to furnish a nitrilium ion. This cationic intermediate coordinates with the neighboring carbonyl group to form a miinchnone derivative, which undergoes a [3+2] cycloaddition followed by subsequent cycloelimination of the isocyanate unit, to afford the pentasubstituted pyrrole adducts 243 and 244 (Scheme 35a, b). [Pg.154]

Another efficient method to prepare chiral propargylamines 42 using a multicomponent process is by alkylation of in situ formed propargyl imines from alkynals 40 and o-phenoxy aniline (11c) by dialkylzinc derivatives 41 in the presence of a chiral ligand, for instance a dipeptide, and a Lewis acid salt, as depicted in Scheme 11.16 [48], Furthermore, the synthesis of A-aryl propargyl amines can be also performed by the alkynylation using dimethylzinc and terminal acetylenes of several aldehydes and o-methoxyaniline catalyzed by (l/ ,25)-A-bis(p-methoxybenzyl)norephedrine and phenylacetylene (52-93%, 79-97% ee) [49],... [Pg.321]

Coupling of Aldehydes or Imines and Alkynes. Among the silver salts screened, silver nitrate and -triflate proved to be the most efficient catalyst for the condensation of terminal alkynes with an a-iminoester derived from ethyl glyoxylate (eq 55). ... [Pg.642]

Abstract The selective catalytic activation/functionalization of sp C-H bonds is expected to improve synthesis methods by better step number and atom economy. This chapter describes the recent achievements of ruthenium(II) catalysed transformations of sp C-H bonds for cross-coupled C-C bond formation. First arylation and heteroarylation with aromatic halides of a variety of (hetero)arenes, that are directed at ortho position by heterocycle or imine groups, are presented. The role of carboxylate partners is shown for Ru(II) catalysts that are able to operate profitably in water and to selectively produce diarylated or monoarylated products. The alkylation of (hetero)arenes with primary and secondary alkylhalides, and by hydroarylation of alkene C=C bonds is presented. The recent access to functional alkenes via oxidative dehydrogenative functionalization of C-H bonds with alkenes first, and then with alkynes, is shown to be catalysed by a Ru(ll) species associated with a silver salt in the presence of an oxidant such as Cu(OAc)2. Finally the catalytic oxidative annulations with alkynes to rapidly form a variety of heterocycles are described by initial activation of C-H followed by that of N-H or O-H bonds and by formation of a second C-C bond on reaction with C=0, C=N, and sp C-H bonds. Most catalytic cycles leading from C-H to C-C bond are discussed. [Pg.119]


See other pages where Imine salts from alkynes is mentioned: [Pg.113]    [Pg.94]    [Pg.487]    [Pg.212]    [Pg.225]    [Pg.8]    [Pg.123]    [Pg.109]    [Pg.274]    [Pg.41]    [Pg.109]    [Pg.442]    [Pg.1101]    [Pg.298]    [Pg.227]    [Pg.21]    [Pg.192]    [Pg.234]    [Pg.279]    [Pg.562]   
See also in sourсe #XX -- [ Pg.1676 ]




SEARCH



Alkynes imines

From alkynes

From imines

Imine salts

Imine salts Imines

© 2024 chempedia.info