Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selectivity of catalytic activity

P. Soumillion and J. Fastrez Novel Concepts for Selection of Catalytic Activity. Curr. Opin. Biotechnol. 12, 387 (2001). [Pg.219]

The preceding discussion has concentrated on the selection of catalytically active components. Although this is an essential task, this is just one aspect of the whole catalytic process, which also includes selection of catalyst support and the design of the overall catalyst in relation to reaction engineering requirements, so that not only activity and selectivity but also mechanical and chemical stability are ensured. For catalyst supports, the design variables are the degree and the form of the dispersion of the catalytic active components, and the porosity of the support. [Pg.271]

Jestin JL, Kristensen P, Winter G. A method for the selection of catalytic activity using phage display and proximity coupling. Angew. Chem. Int. Ed. Engl. 1999 38 1124-1127. [Pg.343]

The cationic aqua complexes prepared from traws-chelating tridentate ligand, R,R-DBFOX/Ph, and various transition metal(II) perchlorates induce absolute enantio-selectivity in the Diels-Alder reactions of cyclopentadiene with 3-alkenoyl-2-oxazoli-dinone dienophiles. Unlike other bisoxazoline type complex catalysts [38, 43-54], the J ,J -DBFOX/Ph complex of Ni(C104)2-6H20, which has an octahedral structure with three aqua ligands, is isolable and can be stored in air for months without loss of catalytic activity. Iron(II), cobalt(II), copper(II), and zinc(II) complexes are similarly active. [Pg.250]

The spillover effect can be described as the mobility of sorbed species from one phase on which they easily adsorb (donor) to another phase where they do not directly adsorb (acceptor). In this way a seemingly inert material can acquire catalytic activity. In some cases, the acceptor can remain active even after separation from the donor. Also, quite often, as shown by Delmon and coworkers,65 67 simple mechanical mixing of the donor and acceptor phases is sufficient for spillover to occur and influence catalytic kinetics leading to a Remote Control mechanism, a term first introduced by Delmon.65 Spillover may lead, not only to an improvement of catalytic activity and selectivity but also to an increase in lifetime and regenerability of catalysts. [Pg.101]

Significant promotional phenomena have been also found26 in the case of NO reduction by H2. The enhancement of catalytic activity and selectivity is again due to enhanced NO adsorption and dissociation, caused by the Na supply to the catalyst upon negative current or potential application. [Pg.449]

The second phenomenon, i.e. the change in catalytic activity or selectivity of the active phase with varying catalyst support, is usually termed metal-support interaction. It manifests itself even when the active phase has the same dispersion or average crystallite size on different... [Pg.488]

In all these cases the support has a dramatic effect on the activity and selectivity of the active phase. In classical terminology all these are Schwab effects of the second kind where an oxide affects the properties of a metal. Schwab effects of the first kind , where a metal affects the catalytic properties of a catalytic oxide, are less common although in the case of the Au/Sn02 oxidation catalysts9,10 it appears that most of the catalytic action takes place at the metal-oxide-gas three phase boundaries. [Pg.489]

Electrochemical promotion, or non-Faradaic Electrochemical Modification of Catalytic Activity (NEMCA) came as a rather unexpected discovery in 1980 when with my student Mike Stoukides at MIT we were trying to influence in situ the rate and selectivity of ethylene epoxidation by fixing the oxygen activity on a Ag catalyst film deposited on a ceramic O2 conductor via electrical potential application between the catalyst and a counter electrode. [Pg.584]

TPSR results are presented in Fig. 4. Propene is produced when the sample temperature is above 350 TC on both samples, which means converting of propane over CNF catalysts could occur without oxygm. The desorption products amounts are 0.35 and 0.26 mmol/g for CNF-RA and CNF-HA respectively while the percentages of propene in llie desorption substances over these two sample are 51.4% and 87.7%. These results imply that the propene selectivity may increase, at least partly, due to restriction of oxidation of propane to COx by heat treatment at the cost of catalytic activity. [Pg.748]

Owing to the exothermic nature of hydrogenations, the avoidance of hot spots causing reductions in selectivity and catalytic activity is a second driver [11]. [Pg.620]

The enzymes are protein molecules having globular structure, as a rule. The molecular masses of the different enzymes have values between ten thousands and hundred thousands. The enzyme s active site, which, as a rule, consists of a nonproteinic organic compound containing metal ions of variable valency (iron, copper, molybdenum, etc.) is linked to the protein globule by covalent or hydrogen bonds. The catalytic action of the enzymes is due to electron transfer from these ions to the substrate. The protein part of the enzyme secures a suitable disposition of the substrate relative to the active site and is responsible for the high selectivity of catalytic action. [Pg.549]

Zeolites have ordered micropores smaller than 2nm in diameter and are widely used as catalysts and supports in many practical reactions. Some zeolites have solid acidity and show shape-selectivity, which gives crucial effects in the processes of oil refining and petrochemistry. Metal nanoclusters and complexes can be synthesized in zeolites by the ship-in-a-bottle technique (Figure 1) [1,2], and the composite materials have also been applied to catalytic reactions. However, the decline of catalytic activity was often observed due to the diffusion-limitation of substrates or products in the micropores of zeolites. To overcome this drawback, newly developed mesoporous silicas such as FSM-16 [3,4], MCM-41 [5], and SBA-15 [6] have been used as catalyst supports, because they have large pores (2-10 nm) and high surface area (500-1000 m g ) [7,8]. The internal surface of the channels accounts for more than 90% of the surface area of mesoporous silicas. With the help of the new incredible materials, template synthesis of metal nanoclusters inside mesoporous channels is achieved and the nanoclusters give stupendous performances in various applications [9]. In this chapter, nanoclusters include nanoparticles and nanowires, and we focus on the synthesis and catalytic application of noble-metal nanoclusters in mesoporous silicas. [Pg.383]

In this chapter the potential of nanostructured metal systems in catalysis and the production of fine chemicals has been underlined. The crucial role of particle size in determining the activity and selectivity of the catalytic systems has been pointed out several examples of important reactions have been presented and the reaction conditions also described. Metal Vapor Synthesis has proved to be a powerful tool for the generation of catalytically active microclusters SMA and nanoparticles. SMA are unique homogeneous catalytic precursors and they can be very convenient starting materials for the gentle deposition of catalytically active metal nanoparticles of controlled size. [Pg.450]

Partial hydrolysis of nitrile gives amides. Conventionally, such reactions occur under strongly basic or acidic conditions.42 A broad range of amides are accessed in excellent yields by hydration of the corresponding nitriles in water and in the presence of the supported ruthenium catalyst Ru(0H)x/A1203 (Eq. 9.19).43 The conversion of acrylonitrile into acrylamide has been achieved in a quantitative yield with better than 99% selectivity. The catalyst was reused without loss of catalytic activity and selectivity. This conversion has important industrial applications. [Pg.309]

Zinc chloride was used as a catalyst in the Friedel Crafts benzylation of benzenes in the presence of polar solvents, such as primary alcohols, ketones, and water.639 Friedel-Crafts catalysis has also been carried out using a supported zinc chloride reagent. Mesoporous silicas with zinc chloride incorporated have been synthesized with a high level of available catalyst. Variation in reaction conditions and relation of catalytic activity to pore size and volume were studied.640 Other supported catalytic systems include a zinc bromide catalyst that is fast, efficient, selective, and reusable in the /wa-bromination of aromatic substrates.641... [Pg.1202]

Next, we investigated the experimental parameters for hydrogenolysis of Cbz-protected amino acids. It is important to carefully select the experimental parameters so that the reactions are not limited by diffusion of hydrogen to the catalytically active sites. The diffusion of hydrogen can be affected by temperature, agitation speed, as well as the number of catalytically active sites... [Pg.488]

It is important to compare the catalytic properties of Prussian blue with known hydrogen peroxide transducers. Table 13.2 presents the catalytic parameters, which are of major importance for analytical chemistry selectivity and catalytic activity. It is seen that platinum, which is still considered as the universal transducer, possesses rather low catalytic activity in both H202 oxidation and reduction. Moreover, it is nearly impossible to measure hydrogen peroxide by its reduction on platinum, because the rate of oxygen reduction is ten times higher. The situation is drastically improved in case of enzyme peroxidase electrodes. However, the absolute records of both catalytic activity... [Pg.443]

These telomerization reactions of butadiene with nucleophiles are also catalyzed by nickel complexes. For example, amines (18-23), active methylene compounds (23, 24), alcohols (25, 26), and phenol (27) react with butadiene. However, the selectivity and catalytic activity of nickel catalysts are lower than those of palladium catalysts. In addition, a mixture of monomeric and dimeric telomers is usually formed with nickel catalysts ... [Pg.146]

The influence of hydrogen pressure, substrate and catalyst concentration has briefly been mentioned. The reaction rate is dependent upon the catalyst concentration and hydrogen pressure, but appears to be independent of substrate concentration. The mechanism is proposed to involve the activation of the parent [Pd(allyl)] species producing an unstable hydrido-Pd(II) species (71), ensued by a fast reaction with the diene to restore the [Pd(allyl)] moiety (72) (Scheme 14.21). The observation that most of the starting material is isolated after the reaction suggests that only a small portion of the catalyst is active under the reaction conditions. Although a complete selectivity for the monoene is observed (even after full conversion), the presence of catalytically active colloidal palladium has not been completely excluded. [Pg.408]


See other pages where Selectivity of catalytic activity is mentioned: [Pg.126]    [Pg.70]    [Pg.126]    [Pg.226]    [Pg.201]    [Pg.374]    [Pg.126]    [Pg.70]    [Pg.126]    [Pg.226]    [Pg.201]    [Pg.374]    [Pg.11]    [Pg.499]    [Pg.248]    [Pg.269]    [Pg.92]    [Pg.66]    [Pg.72]    [Pg.226]    [Pg.305]    [Pg.391]    [Pg.95]    [Pg.98]    [Pg.42]    [Pg.100]    [Pg.73]    [Pg.116]    [Pg.285]    [Pg.59]    [Pg.142]    [Pg.348]    [Pg.427]    [Pg.461]   
See also in sourсe #XX -- [ Pg.126 ]

See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Activator selection

Catalytic activity selectivity

Catalytic selective

Catalytic selectivity

Selective activation

Selective activity

© 2024 chempedia.info