Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imine compounds asymmetric reaction

Hagiwara et al.107 reported the chiral Pd(II) complex-catalyzed asymmetric addition of enol silyl ethers to imines, based on the belief that Pd(II) enolate was involved in the reaction. They found that with compound 171a as the catalyst, very low enantioselectivity was obtained in the asymmetric reactions between silyl enol ether and imine compounds (Scheme 3-58). However, in the... [Pg.184]

This chapter has introduced the aldol and related allylation reactions of carbonyl compounds, the allylation of imine compounds, and Mannich-type reactions. Double asymmetric synthesis creates two chiral centers in one step and is regarded as one of the most efficient synthetic strategies in organic synthesis. The aldol and related reactions discussed in this chapter are very important reactions in organic synthesis because the reaction products constitute the backbone of many important antibiotics, anticancer drugs, and other bioactive molecules. Indeed, study of the aldol reaction is still actively pursued in order to improve reaction conditions, enhance stereoselectivity, and widen the scope of applicability of this type of reaction. [Pg.188]

The use of chiral azomethine imines in asymmetric 1,3-dipolar cycloadditions with alkenes is limited. In the first example of this reaction, chiral azomethine imines were applied for the stereoselective synthesis of C-nucleosides (100-102). Recent work by Hus son and co-workers (103) showed the application of the chiral template 66 for the formation of a new enantiopure azomethine imine (Scheme 12.23). This template is very similar to the azomethine ylide precursor 52 described in Scheme 12.19. In the presence of benzaldehyde at elevated temperature, the azomethine imine 67 is formed. 1,3-Dipole 67 was subjected to reactions with a series of electron-deficient alkenes and alkynes and the reactions proceeded in several cases with very high selectivities. Most interestingly, it was also demonstrated that the azomethine imine underwent reaction with the electronically neutral 1-octene as shown in Scheme 12.23. Although a long reaction time was required, compound 68 was obtained as the only detectable regio- and diastereomer in 50% yield. This pioneering work demonstrates that there are several opportunities for the development of new highly selective reactions of azomethine imines (103). [Pg.834]

Although asymmetric reactions using chiral Lewis acids are of great current interest as one of the most efficient methods for the preparation of chiral compounds, examples using imines as electrophiles are rare compared to those us-... [Pg.143]

The required chiral sulfur ylide of type 59 is formed in a reaction with a diazo compound in the presence of an achiral metal catalyst. Subsequently, asymmetric reaction of the chiral ylide 59 with the C=N double bond of the imine proceeds diastereoselectively and enantioselectively, giving the optically active aziridine 57. The chiral sulfide catalyst released is then used for the next catalytic cycle. The cat-alytically active species in the asymmetric process is the sulfide, so this concept can also be regarded as an organocatalytic reaction. [Pg.119]

The examples outlined in this chapter show that carbohydrates are efficient stereodifferentiating auxiliaries, which offer possibilities for stereochemical discrimination in a wide variety of chemical reactions. Interesting chiral products are accessible, including chiral carbo- and heterocycles, a- and 3-amino acid derivatives, 3-lactams, branched carbonyl compounds and amines. Owing to the immense material published since the time of the earlier review articles on carbohydrates in asymmetric synthesis [9,10], the examples discussed in this chapter necessarily focused on the use of carbohydrates as auxiliaries covalently linked to and cleavable from the substrate. Given the scope of this chapter, a discussion of other interesting asymmetric reactions has not been permitted — for example, reactions in which carbohydrate-derived Lewis acids, such as cyclopentadienyl titanium carbohydrate complexes, exhibit stereocontrol in aldol reactions [180]. Similarly, processes in which in situ glycosylation induces reactivity and stereodifferentiation — for example, in Mannich reactions of imines [181] — have also been excluded from this discussion. [Pg.494]

Hydrosilylation of unsaturated organic molecules is an attractive organic reaction. Asymmetric hydrosilylation of prochiral ketones or imines provides effective routes to optically active secondary alcohols or chiral amines (Scheme 756). These asymmetric processes can be catalyzed by titanium derivatives. The ( A ebthi difluoro titanium complex has been synthesized from the corresponding chloro compound.1659 This compound results in a very active system for the highly enantioselective hydrosilylation of acyclic and cyclic imines and asymmetric hydrosilylation reactions of ketones including aromatic ketones.1661,1666,1926-1929 An analogous l,l -binaphth-2,2 -diolato complex catalyzes the enantioselective hydrosilylation of ketones.1... [Pg.658]

CuOTf is also a catalyst able to mediate enantioselective ene reactions with imines and asymmetric addition of allylic metal compounds to a-imino esters or aza Diels-Alder. In the latter case, CuOTf gives yields and enantioselectivities comparable to those obtained with the other copper(I) salt used in the studies (eq 120). [Pg.177]

Azirines (three-membered cyclic imines) are related to aziridines by a single redox step, and these reagents can therefore function as precursors to aziridines by way of addition reactions. The addition of carbon nucleophiles has been known for some time [52], but has recently undergone a renaissance, attracting the interest of several research groups. The cyclization of 2-(0-tosyl)oximino carbonyl compounds - the Neber reaction [53] - is the oldest known azirine synthesis, and asymmetric variants have been reported. Zwanenburg et ah, for example, prepared nonracemic chiral azirines from oximes of 3-ketoesters, using cinchona alkaloids as catalysts (Scheme 4.37) [54]. [Pg.134]

Reactions of nitro compounds with chiral imines have only recently been described. Either chiral 1-phenylethylamine (auxiliary) or the glyceraldehyde acetonide aldehyde was used as the chiral precursors of the imines 66 and 68, which reacted with 3-mesyloxynitropropane to give the 3-nitropyrrolidines dl)-67 and 69, respectively, with good diastereoselectivity. In fact, both products were obtained (almost) exclusively as trans diastereomers with high level of asymmetric induction, but the configurations of the newly formed stereocenters were not determined [44] (Scheme 13). N-Boc imines can be formed... [Pg.16]

Double asymmetric induction operates when the azomethine compound is derived from a chiral a-amino aldehyde and a chiral amine, e.g., the sulfin-imine 144 [70]. In this case, the R configuration at the sulfur of the chiral auxihary, N-tert-butanesulfinamide, matched with the S configuration of the starting a-amino aldehyde, allowing complete stereocontrol to be achieved in the preparation of the diamine derivatives 145 by the addition of trifluo-romethyl anion, which was formed from trifluoromethyltrimethylsilane in the presence of tetramethylammonium fluoride (Scheme 23). The substituents at both nitrogen atoms were easily removed by routine procedures see, for example, the preparation of the free diamine 146. On the other hand, a lower diastereoselectivity (dr 80 20) was observed in one reaction carried out on the imine derived from (it)-aldehyde and (it)-sulfinamide. [Pg.28]


See other pages where Imine compounds asymmetric reaction is mentioned: [Pg.213]    [Pg.584]    [Pg.208]    [Pg.95]    [Pg.124]    [Pg.249]    [Pg.1508]    [Pg.67]    [Pg.3]    [Pg.160]    [Pg.1071]    [Pg.208]    [Pg.202]    [Pg.1508]    [Pg.400]    [Pg.6353]    [Pg.111]    [Pg.37]    [Pg.91]    [Pg.303]    [Pg.75]    [Pg.684]    [Pg.292]    [Pg.245]    [Pg.91]    [Pg.127]    [Pg.95]    [Pg.1216]    [Pg.95]   
See also in sourсe #XX -- [ Pg.196 , Pg.197 , Pg.198 , Pg.199 ]

See also in sourсe #XX -- [ Pg.196 , Pg.197 , Pg.198 , Pg.199 ]




SEARCH



Asymmetric reactions imines

Imine compounds

Imine compounds diastereoselective asymmetric reactions

Imine reaction

Imines compounds

Imines, reactions

© 2024 chempedia.info