Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ideal surface reactions

The importance of low pressures has already been stressed as a criterion for surface science studies. However, it is also a limitation because real-world phenomena do not occur in a controlled vacuum. Instead, they occur at atmospheric pressures or higher, often at elevated temperatures, and in conditions of humidity or even contamination. Hence, a major tlmist in surface science has been to modify existmg techniques and equipment to pemiit detailed surface analysis under conditions that are less than ideal. The scamiing tunnelling microscope (STM) is a recent addition to the surface science arsenal and has the capability of providing atomic-scale infomiation at ambient pressures and elevated temperatures. Incredible insight into the nature of surface reactions has been achieved by means of the STM and other in situ teclmiques. [Pg.921]

No slip Is used as the velocity boundary conditions at all walls. Actually there Is a finite normal velocity at the deposition surface, but It Is Insignificant In the case of dilute reactants. The Inlet flow Is assumed to be Polseullle flow while zero stresses are specified at the reactor exit. The boundary conditions for the temperature play a central role in CVD reactor behavior. Here we employ Idealized boundary conditions In the absence of detailed heat transfer modelling of an actual reactor. Two wall conditions will be considered (1) adiabatic side walls, l.e. dT/dn = 0, and (11) fixed side wall temperatures corresponding to cooled reactor walls. For the reactive species, no net normal flux Is specified on nonreacting surfaces. At substrate surface, the flux of the Tth species equals the rate of reaction of 1 In n surface reactions, l.e. [Pg.357]

In a closely related study, Marecek et al. [46] used the pendant drop video-image method to investigate the adsorption and surface reactions of calix[4]arene ligands at the ideally polarized water-1,2-dichloroethane interface. The difference between the surface tensions in acidic and alkaline media was ascribed to a difference in the charge on the... [Pg.428]

The high concentration of surface defects in adsorbent results in substantially higher change in the value of electrophysical characteristics of adsorbent when it is introduced into the reaction medium if compared to the case of ideal surface. As it has been mentioned in [70] experiments performed at room temperature involving ZnO healed at 810°C show the dependence of where m a 3. [Pg.86]

An ideal gas phase reaction, 2.A B, is surface reaction controlled and has the rate equation... [Pg.710]

Carbon monoxide oxidation is a relatively simple reaction, and generally its structurally insensitive nature makes it an ideal model of heterogeneous catalytic reactions. Each of the important mechanistic steps of this reaction, such as reactant adsorption and desorption, surface reaction, and desorption of products, has been studied extensively using modem surface-science techniques.17 The structure insensitivity of this reaction is illustrated in Figure 10.4. Here, carbon dioxide turnover frequencies over Rh(l 11) and Rh(100) surfaces are compared with supported Rh catalysts.3 As with CO hydrogenation on nickel, it is readily apparent that, not only does the choice of surface plane matters, but also the size of the active species.18-21 Studies of this system also indicated that, under the reaction conditions of Figure 10.4, the rhodium surface was covered with CO. This means that the reaction is limited by the desorption of carbon monoxide and the adsorption of oxygen. [Pg.340]

The phenomena of surface precipitation and isomorphic substitutions described above and in Chapters 3.5, 6.5 and 6.6 are hampered because equilibrium is seldom established. The initial surface reaction, e.g., the surface complex formation on the surface of an oxide or carbonate fulfills many criteria of a reversible equilibrium. If we form on the outer layer of the solid phase a coprecipitate (isomorphic substitutions) we may still ideally have a metastable equilibrium. The extent of incipient adsorption, e.g., of HPOjj on FeOOH(s) or of Cd2+ on caicite is certainly dependent on the surface charge of the sorbing solid, and thus on pH of the solution etc. even the kinetics of the reaction will be influenced by the surface charge but the final solid solution, if it were in equilibrium, would not depend on the surface charge and the solution variables which influence the adsorption process i.e., the extent of isomorphic substitution for the ideal solid solution is given by the equilibrium that describes the formation of the solid solution (and not by the rates by which these compositions are formed). Many surface phenomena that are encountered in laboratory studies and in field observations are characterized by partial, or metastable equilibrium or by non-equilibrium relations. Reversibility of the apparent equilibrium or congruence in dissolution or precipitation can often not be assumed. [Pg.301]

Use such reasonable approximations as (1) Air consists solely of nitrogen and oxygen in exactly 4 1 volume ratio (2) other chemical surface reactions can be neglected because of the short times (4) ideal shock wave relations for pure air with constant specific heats may be used despite the formation of nitric oxide and the occurrence of high temperature. [Pg.71]

The relative simplicity of CO oxidation makes this reaction an ideal model system of a heterogeneous catalytic reaction. Each of the mechanistic steps (adsorption and desorption of the reactants, surface reaction, and desorption of products) has been probed extensively with surface science techniques, as has the interaction between O2 and CO " . These studies have provided essential information necessary for understanding the elementary processes which occur in CO oxidation. [Pg.161]

For some steps the apparent activation energy is to be used in Eq. (10), and in others, the true activation energy. See text. (2) Where relevant, it is assumed that the symmetry number approximates unity it is also assumed that (Ijs) a 0.5, where s is the number of sites adjacent to a given site in a surface bimolecular reaction. (3) Both Cj, gas concentration in molecules cm", and P, gas pressure in atmospheres are used in this work. For an ideal gas, c, = 7.34 x 1q2i pij< 4 Except where otherwise noted, ft a 1. (5) An adsorption reaction is a Rideal-Eley reaction a surface reaction is a "Langrauir-Hinshelwood reaction. [Pg.104]

F centers may act as adsorption centers not only in the alkali halides, but in any other crystals as well. Take, for example, a crystal of ZnO, in which the F center is an oxygen valency with two (not one ) electrons localized near it, as depicted in Fig. 30. From the chemical point of view such a center represents two adjacent localized free valencies of like sign which on an ideal surface could never meet because of Coulomb repulsion between them. (This should be especially stressed.) As a result of this property, such an F center may play a specific role in catalysis acting as an active center for a number of reactions. [Pg.254]

The fifth contribution by M. Putkonen and L. NiinistO presents an overview of Organometallic Precursors for Atomic Layer Deposition (ALD). The key principle of ALD in contrast to CVD is the exclusion of any gas-phase prereaction allowing the thin film growth to be fully controlled by surface reactions and adsorption/desorption kinetics. ALD is thus ideally suited for the growth of ultra-thin layers and atomically abrupt interfaces needed in future nanoelectronic devices. While CVD and ALD have many aspects in common, precursors suitable for ALD generally need to be much more reactive than those used for CVD. Another challenge is to combine low steric demand with very high selectivity of the surface reactions. [Pg.223]

Hydride surface termination has the capability for ideal surface passivation, with each hydrogen atom bonding to a single surface-dangling bond. On silicon, hydride termination has been well researched and shown to provide many advantages, including aqueous stability and limited air stability [13]. The hydride-terminated surface is also of interest as it can be used as a precursor for wet chemical reactions. [Pg.337]

FTIR Spectroscopy and Mechanisms on Electrode. The basis of Fourier transform infrared spectroscopy was described in Section 6.2.6. One of the more difficult aspects of detecting the mechanism of electrode reactions is that of knowing the nature of the intermediate radicals on the electrode surface. Infrared spectroscopy measures chemical bonds, so it is an ideal method for detecting which bonds are present and hence which intermediate radicals are taking part in a surface reaction at a given potential, etc. [Pg.430]

An ideal adsorbed layer possesses the properties of a perfect (ideal concentrated) solution formed by adsorbed particles of one or several species and free sites. Therefore, mass action law for the rates of surface reactions and corresponding equilibria is formulated quite similar to the law for volume reactions in ideal systems with the only difference being that the equations may also contain, along with surface concentrations of substances, surface concentrations of free sites. [Pg.184]

Since mass action law for elementary reactions in ideal adsorbed layers (including also adsorption and desorption processes) coincides in its form with mass action law for elementary reactions in volume ideal systems, general results of the theory of steady-state reactions are equally applicable to volume and to surface reactions. They are very useful when the reaction mechanism is complicated. [Pg.193]

BCls -> B Ga(CH3)3 + AsH3—> GaAs 165, 208, 224 Similarity solution of ideal axisymmetric flow, multicomponent diffusion, evaluation of thermodiffusion, multiple gas-phase and surface reactions, and thermodynamic analysis of reaction pathways and species. [Pg.252]

A criterion was obtained [133] under the fulfilment of which the diffusion can be treated as rapid and not taken into consideration for the surface reaction kinetics kj(ap) [In (L/r0) -1.39] -4 1, where k is the interaction constant of adsorbed substances with active centres. It is evident that at L k r0 this relationship is met. It is this relationship that is the condition for the applicability of the ideal adsorbed layer kinetics but all the limitations imposed for its derivation (the reaction is monomolecular and active centres are taken for a square lattice) should be remembered. [Pg.77]

For an ideal Nernstian reaction where the adsorbates do not interact laterally, or at least where the interactions are independent of the surface coverage, a surface-confined species will follow the following relationships ... [Pg.75]

Experiments also have the capacity to reveal new trends in reactivity and to discover new phenonena concerning reaction dynamics. In addition, experiments provide the ultimate testing ground of any theoretical prediction. What is more, new experimental discoveries can demonstrate to theorists what important elements their theories should contain, and what kind of simplifications are appropriate. Experiments should not be done at the level of overall rates, because very differentmicroscopic dynamics can fortuitously lead to the same overall macroscopic kinetics. Rather, experiments should investigate the surface reaction dynamics directly at the molecular level. In this way, theory and experiment can complement each other ideally, and benefit from the mutual feedback. [Pg.80]

The microkinetic analysis is certainly a scientifically interesting approach which will contribute to the identification and selection of catalytic compounds even in more complex situations as described above. One problem still to be solved is the experimental procurement and/or estimation of the parameters used in microkinetic simulations, which limits the wide applicability of the method. Providing kinetic parameters for a complex reaction network from kinetic experiments for an analogous catalyst is a time-consuming process. Despite the availability of modem experimental equipment and efficient computers, a complex reaction demands at least one man year of work [51]. The estimation of parameters by ab initio or semiempirical methods has to be considered with caution because ideal surfaces are usually assumed. [Pg.271]


See other pages where Ideal surface reactions is mentioned: [Pg.270]    [Pg.270]    [Pg.239]    [Pg.441]    [Pg.179]    [Pg.466]    [Pg.465]    [Pg.19]    [Pg.49]    [Pg.181]    [Pg.357]    [Pg.553]    [Pg.118]    [Pg.222]    [Pg.744]    [Pg.516]    [Pg.98]    [Pg.52]    [Pg.338]    [Pg.12]    [Pg.18]    [Pg.335]    [Pg.131]    [Pg.147]    [Pg.492]    [Pg.40]    [Pg.72]    [Pg.78]   


SEARCH



Ideal surface reactions catalytic mechanisms

Ideal surface reactions kinetic equation

Ideal surface reactions oxides

Ideal surface reactions reaction rate

Ideal surface reactions reversible reaction

Ideal surfaces

Surface reactions ideal surfaces

© 2024 chempedia.info