Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ideal definition

Also shown is how the topic of AB cements relates to these definitions. An ideal definition for a subject should be one that exactly fits it. It should cover all aspects of the subject while excluding all extraneous topics. Thus, a theory should be neither too restrictive nor too general. The Arrhenius and Germann-Cady-Elsey definitions do not relate to the subject at all as... [Pg.19]

In order to present clear concepts it is necessary that idealized definitions be adopted but it is reeognized that the realities of polymer science must be faced. Deviations from ideality arise with polymers at both molecular and bulk levels in ways that have no parallel with the ordinary small molecules of organic or inorganic chemistry. Although such deviations are not explicitly taken into account in the definitions below, the terms recommended can usefully be applied to the predominant structural features of real polymer molecules, if necessary with self-explanatory, if imprecise, qualifications such as essentially. , almost completely. , or highly. . Although such expressions lack the rigour beloved by the purist, every experienced polymer scientist knows that communication in this discipline is impossible without them. [Pg.4]

One of these, electron transfer, actually occurs in the ideal definitional sense. It applies to the few overworked redox reactions where there is no adsorbed intermediate. The ion in a cathodic transfer is located in the interfacial region and receives an electron (ferric becomes ferrous) without the nucleus of the ion moving. Later (perhaps as much as 10-9 s later), a rearrangement of the hydration sheath completes itself because that for the newly produced ferrous ion in equilibrium differs (in equilibrium) substantially from that for the ferric. Now (even in the electron transfer case) the ion moves, but the definition remains intact because it moves after electron transfer. The amounts of such small movements (changes in the ion-solvent distance for Fe2+ and Fe3+ ions in equilibrium) are now known from EXAFS measurements. [Pg.780]

Ideally, definitive CYP reaction phenotyping should be available before the initiation of clinical development. Unfortunately, more accurate data can only be obtained once clearance pathways are identified in human subjects, and human radiolabeled studies are generally not conducted as the first set of clinical studies for NCEs. In this context, CYP reaction phenotyping, performed using various human in vitro systems is expected to be as complete as possible (Bjornsson, 2003). [Pg.127]

A process model is an ideal definition of the software life cycle or of how actual software projects work. As such, they are prescriptions for how to organize the software engineering activity. In reality, actual software projects deviate from these models but the models nevertheless give both managers and engineers a framework in which to plan and schedule their work. [Pg.297]

Over 1,000 pages long and with over 68,000 definitions, this cheap, compact and totally up-to-date book is ideal for today s needs. It includes many technical and colloquial terms, guides to pronunciation and common abbreviations. [Pg.438]

Consider two distinct closed thermodynamic systems each consisting of n moles of a specific substance in a volnme Vand at a pressure p. These two distinct systems are separated by an idealized wall that may be either adiabatic (lieat-impemieable) or diathermic (lieat-condncting). Flowever, becanse the concept of heat has not yet been introdnced, the definitions of adiabatic and diathemiic need to be considered carefiilly. Both kinds of walls are impemieable to matter a permeable wall will be introdnced later. [Pg.323]

The remaining question is how we got from G3MP2 (OK) = —117.672791 to G3MP2 Enthalpy = —117.667683. This is not a textbook of classical thermodynamics (see Klotz and Rosenberg, 2000) or statistical themiodynamics (see McQuarrie, 1997 or Maczek, 1998), so we shall use a few equations from these fields opportunistically, without explanation. The definition of heat capacity of an ideal gas... [Pg.321]

When these four (or three) contributions are summed for a molecule such as propene, we have the themial correction to the energy G3MP2 (OK). The result is G3MP2 Energy in the G3(MP2) output block. To this is added PV, which is equal to RT for an ideal gas, in accordance with the classical definition of the enthalpy... [Pg.322]

Ideally a standard cell is constmcted simply and is characterized by a high constancy of emf, a low temperature coefficient of emf, and an emf close to one volt. The Weston cell, which uses a standard cadmium sulfate electrolyte and electrodes of cadmium amalgam and a paste of mercury and mercurous sulfate, essentially meets these conditions. The voltage of the cell is 1.0183 V at 20°C. The a-c Josephson effect, which relates the frequency of a superconducting oscillator to the potential difference between two superconducting components, is used by NIST to maintain the unit of emf. The definition of the volt, however, remains as the Q/A derivation described. [Pg.20]

When this is combined with the definition of minimum separation work, an approximation for distillation efficiency for an ideal binary can be obtained ... [Pg.84]

Model Networks. Constmction of model networks allows development of quantitative stmcture property relationships and provide the abiUty to test the accuracy of the theories of mbber elasticity (251—254). By definition, model networks have controlled molecular weight between cross-links, controlled cross-link functionahty, and controlled molecular weight distribution of cross-linked chains. Sihcones cross-linked by either condensation or addition reactions are ideally suited for these studies because all of the above parameters can be controlled. A typical condensation-cure model network consists of an a, CO-polydimethylsiloxanediol, tetraethoxysilane (or alkyltrimethoxysilane), and a tin-cure catalyst (255). A typical addition-cure model is composed of a, ffl-vinylpolydimethylsiloxane, tetrakis(dimethylsiloxy)silane, and a platinum-cure catalyst (256—258). [Pg.49]

The definition of fugacity is completed by setting the ideal gas state fugacity of pure species / equal to its pressure ... [Pg.494]

The definition of fugacity of a species in solution is parallel to the definition of pure species fugacity. Equation 154 is analogous to the ideal gas expression ... [Pg.494]

It has been shown (16) that a stable foam possesses both a high surface dilatational viscosity and elasticity. In principle, defoamers should reduce these properties. Ideally a spread duplex film, one thick enough to have two definite surfaces enclosing a bulk phase, should eliminate dilatational effects because the surface tension of an iasoluble, one-component layer does not depend on its thickness. This effect has been verified (17). SiUcone antifoams reduce both the surface dilatational elasticity and viscosity of cmde oils as iUustrated ia Table 2 (17). The PDMS materials are Dow Coming Ltd. polydimethylsiloxane fluids, SK 3556 is a Th. Goldschmidt Ltd. siUcone oil, and FC 740 is a 3M Co. Ltd. fluorocarbon profoaming surfactant. [Pg.464]

A modified definition of resonance energy has been introduced by Dewar (66T(S8)75, 69JA6321) in which the reference point is the corresponding open-chain polyene. In principle this overcomes the difficulties inherent in comparing observed stability with that of an idealized molecule with pure single and double bonds, as thermochemical data for the reference acyclic polyenes are capable of direct experimental determination. In practice, as the required data were not available, recourse was made to theoretical calculations using a semiempirical SCF-MO method. The pertinent Dewar Resonance Energies are listed in Table 30. [Pg.28]

The most satisfactory calciilational procedure for thermodynamic properties of gases and vapors requires PVT data and ideal gas heat capacities. The primary equations are based on the concept of the ideal gas state and the definitions of residual enthalpy anci residual entropy ... [Pg.524]

A key limitation of sizing Eq. (8-109) is the limitation to incompressible flmds. For gases and vapors, density is dependent on pressure. For convenience, compressible fluids are often assumed to follow the ideal-gas-law model. Deviations from ideal behavior are corrected for, to first order, with nommity values of compressibihty factor Z. (See Sec. 2, Thvsical and Chemical Data, for definitions and data for common fluids.) For compressible fluids... [Pg.788]

As an example of how the approximate thermodynamic-property equations are handled in the inner loop, consider the calculation of K values. The approximate models for nearly ideal hquid solutions are the following empirical Clausius-Clapeyron form of the K value in terms of a base or reference component, b, and the definition of the relative volatility, Ot. [Pg.1288]

When the gas chromatograph is attached to a mass spectrometer, a very powerful analytical tool (gas chromatography-mass spectrometry, GC-MS) is produced. Vapour gas chromatography allows the analyses of mixtures but does not allow the definitive identification of unknown substances whereas mass spectrometry is good for the identification of a single compound but is less than ideal for the identification of mixtures of... [Pg.17]

Eirst of all, what is meant by a solid surface Ideally the surface should be defined as the plane at which the solid terminates, that is, the last atom layer before the adjacent phase (vacuum, vapor, liquid, or another solid) begins. Unfortunately such a definition is impractical because the effect of termination extends into the solid beyond the outermost atom layer. Indeed, the current definition is based on that knowledge, and the surface is thus regarded as consisting of that number of atom layers over which the effect of termination of the solid decays until bulk properties are reached. In practice, this decay distance is of the order of 5-20 nm. [Pg.1]

Electro-osmosis has been defined in the literature in many indirect ways, but the simplest definition comes from the Oxford English Dictionary, which defines it as the effect of an external electric held on a system undergoing osmosis or reverse osmosis. Electro-osmosis is not a well-understood phenomenon, and this especially apphes to polar non-ionic solutions. Recent hterature and many standard text and reference books present a rather confused picture, and some imply directly or indirectly that it cannot take place in uniform electric fields [31-35]. This assumption is perhaps based on the fact that the interaction of an external electric held on a polar molecule can produce only a net torque, but no net force. This therefore appears to be an ideal problem for molecular simulation to address, and we will describe here how molecular simulation has helped to understand this phenomenon [26]. Electro-osmosis has many important applications in both the hfe and physical sciences, including processes as diverse as water desahnation, soil purification, and drug delivery. [Pg.786]


See other pages where Ideal definition is mentioned: [Pg.7]    [Pg.283]    [Pg.7]    [Pg.283]    [Pg.417]    [Pg.2854]    [Pg.2902]    [Pg.95]    [Pg.121]    [Pg.511]    [Pg.238]    [Pg.85]    [Pg.381]    [Pg.545]    [Pg.2035]    [Pg.458]    [Pg.5]    [Pg.375]    [Pg.48]    [Pg.325]    [Pg.78]    [Pg.49]    [Pg.80]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Definition of the ideal solution

Definition of the ideal solution model

Ideal chemical reaction, definition

Ideal clay, definition

Ideal mixture, definition

Ideal solution definition

Ideal synthesis, definition

Ideal systems definition

Idealized reference state, definition

Thermodynamic definition of a dilute ideal solution

© 2024 chempedia.info