Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxyls dehydration

Epoxyketone 245 is readily available from 16-dehydropregnenolone via several steps, including a crucial microbiological 11a-hydroxylation. Dehydration of 245 gives the 9,11-olefin 246. The alcohol at C-21 is then converted to the mesylate (247), and this is reduced to give the methyl ketone (248). The olefin is then converted to the 9a-fluoro-llp-hydroxy array (250) by the standard sequence [addition of HOBr, closure to the oxirane (249), opening with HF]. Note that the reactivity of the epoxides in 249 is... [Pg.187]

In contrast, the isourea-mediated p-elimination method from Thr peptides gave a mixture of Z- and E-isomers in a 3 2 ratio. 104 Similarly to AAla, peptides containing AAbu can also be synthesized by N-hydroxylation/dehydration 147 or by N-chlorination/dehydrochlorina-tion. 122-124 Another method, reported by Smelka et al. 148 involves the synthesis of dipeptides 60 with a C-terminal AAbu by condensing the Na-protected a-amino acid amides 58 with the a-oxo acid 59 (Scheme 20). The ratio of Z/E-isomers is 10 1. We have used Miller s method to prepare peptides containing AAbu. 351... [Pg.651]

EO/PO copolymers are synthesized at 120-180 C, 2-6 bar in s ibatch reactors where pnre alkylene oxide or a mixture of them is fed over time. Lower temperatures are used when PO is fed to limit the intervention of secondary reactions such as the hydroxyl dehydration [8] and allyl alcohol formation [9]. [Pg.256]

The reaction of hydroxyl dehydration, which eliminates the chain terminal hydroxyl is a drawback in the case of production of polyols for polyurethane industry, therefore several catalysts apart from potassium and sodium hydroxide have been proposed. These catalysts, including hydroxide of rubidium, cesium, barium and strontium, or double metal cyanide, are much more expensive and toxic than classical catalysts [11], Recently, a new class of catalyst has been... [Pg.256]

The most difflcult pharmaceutically relevant oxidation of steroids is the introduction of a 14 -hydroxyl group. This functional group is found in heart-active steroids (cardenolides) such as digitoxigenin, which also contain a 17/J-butenolide substituent. The 14/ -hydroxyl group is easily cleaved off by dehydration and must therefore not be treated with Lewis or... [Pg.286]

Fig. 5.16 Surface concentration of hydroxyl groups of silica, as a function of the temperature of dehydration. Data are +, from Fripiat and Uytterhoeven A, from Kiselev and Zhuralev O, from Taylor (cf. Fig. 5.16 Surface concentration of hydroxyl groups of silica, as a function of the temperature of dehydration. Data are +, from Fripiat and Uytterhoeven A, from Kiselev and Zhuralev O, from Taylor (cf.
Intermediates. 3,4-Dihydro-2H-pyran [110-87-2] is prepared by a ring-expanding dehydration of tetrahydrofurfuryl alcohol. It is used as a protecting agent for hydroxyl compounds and as an intermediate. 2-Methylfuran is a chemical intermediate for 5-methylfurfural [620-02-0] (151) and... [Pg.83]

I60C-Hydroxy Derivatives of Gorticoids and their Acetonides. The preparation of 16a-hydroxy-9a-fluoroprednisolone (48) from the 3,20-bisethylene ketal of hydrocortisone acetate (49) has been reported (73). The latter was dehydrated with thionyl chloride in pyridine to yield the 4,9(11),16-triene (50). The 16,17-unsaturated linkage was selectively hydroxylated with OsO /pyridine to yield the 16a,17a-diol (51), which was converted... [Pg.100]

Rea.ctlons, The chemistry of butanediol is deterrnined by the two primary hydroxyls. Esterification is normal. It is advisable to use nonacidic catalysts for esterification and transesterification (122) to avoid cycHc dehydration. When carbonate esters are prepared at high dilutions, some cycHc ester is formed more concentrated solutions give a polymeric product (123). With excess phosgene the usefiil bischloroformate can be prepared (124). [Pg.108]

Study of the mechanism of this complex reduction-Hquefaction suggests that part of the mechanism involves formate production from carbonate, dehydration of the vicinal hydroxyl groups in the ceUulosic feed to carbonyl compounds via enols, reduction of the carbonyl group to an alcohol by formate and water, and regeneration of formate (46). In view of the complex nature of the reactants and products, it is likely that a complete understanding of all of the chemical reactions that occur will not be developed. However, the Hquefaction mechanism probably involves catalytic hydrogenation because carbon monoxide would be expected to form at least some hydrogen by the water-gas shift reaction. [Pg.26]

Condensa.tlon, A variety of condensation reactions involving the hydroxyl or the carboxyl or both groups occur with lactic acid. The important reactions where products can be obtained ia high yields are esterificatioa (both iatramolecular and with another alcohol or acid), dehydration, and aminolysis. [Pg.512]

On dehydration, nitro alcohols yield nitro-olefins. The ester of the nitro alcohol is treated with caustic or is refluxed with a reagent, eg, phthaUc anhydride or phosphoms pentoxide. A mil der method involves the use of methane sulfonyl chloride to transform the hydroxyl into a better leaving group. Yields up to 80% after a reaction time of 15 min at 0°C have been reported (5). In aqueous solution, nitro alcohols decompose at pH 7.0 with the formation of formaldehyde. One mole of formaldehyde is released per mole of monohydric nitro alcohol, and two moles of formaldehyde are released by the nitrodiols. However, 2-hydroxymethyl-2-nitro-l,3-propanediol gives only two moles of formaldehyde instead of the expected three moles. The rate of release of formaldehyde increases with the pH or the temperature or both. [Pg.61]

Aluminum hydroxide and aluminum chloride do not ionize appreciably in solution but behave in some respects as covalent compounds. The aluminum ion has a coordination number of six and in solution binds six molecules of water existing as [Al(H20)g]. On addition of a base, substitution of the hydroxyl ion for the water molecule proceeds until the normal hydroxide results and precipitation is observed. Dehydration is essentially complete at pH 7. [Pg.95]

Many chlorine compounds, including methyl chlorosilanes, such as ClSi(CH2)3, Cl2Si(CH3)2, Cl3Si(CH3) tetrachlorosilane [10026-04-7] SiCl chlorine, CI2 and carbon tetrachloride, CCl, can completely react with molecular surface hydroxyl groups to form hydrochloric acid (40), which then desorbs from the gel body in a temperature range of 400—800°C, where the pores are still interconnected. Carbon tetrachloride can yield complete dehydration of ultrapure gel—siUca optical components (3,23). [Pg.256]

Conversion of the C-2 amide to a biologically inactive nitrile, which can be further taken via a Ritter reaction (29) to the corresponding alkylated amide, has been accomphshed. When the 6-hydroxyl derivatives are used, dehydration occurs at this step to give the anhydro amide. Substituting an A/-hydroxymethylimide for isobutylene in the Ritter reaction yields the acylaminomethyl derivative (30). Hydrolysis affords an aminomethyl compound. Numerous examples (31—35) have been reported of the conversion of a C-2 amide to active Mannich adducts which are extremely labile and easily undergo hydrolysis to the parent tetracycline. This reverse reaction probably accounts for the antibacterial activity of these tetracyclines. [Pg.178]

A series of sorbitol-based nonionic surfactants are used ia foods as water-ia-oil emulsifiers and defoamers. They are produced by reaction of fatty acids with sorbitol. During reaction, cycHc dehydration as well as esterification (primary hydroxyl group) occurs so that the hydrophilic portion is not only sorbitol but also its mono- and dianhydride. The product known as sorbitan monostearate [1338-41 -6] for example, is a mixture of partial stearic and palmitic acid esters (sorbitan monopalmitate [26266-57-9]) of sorbitol, 1,5-anhydro-D-glucitol [154-58-8] 1,4-sorbitan [27299-12-3] and isosorbide [652-67-5]. Sorbitan esters, such as the foregoing and also sorbitan monolaurate [1338-39-2] and sorbitan monooleate [1338-43-8], can be further modified by reaction with ethylene oxide to produce ethoxylated sorbitan esters, also nonionic detergents FDA approved for food use. [Pg.480]

The chemistry of ethyl alcohol is largely that of the hydroxyl group, namely, reactions of dehydration, dehydrogenation, oxidation, and esterification. The hydrogen atom of the hydroxyl group can be replaced by an active metal, such as sodium, potassium, and calcium, to form a metal ethoxide (ethylate) with the evolution of hydrogen gas (see Alkoxides, metal). [Pg.402]

The dehydration of alcohols is an important elimination reaction that takes place under acidic rather flian basic conditions. It involves an El mechanism." The function of the acidic reagent is to convert the hydroxyl group to a better leaving group by protonation ... [Pg.392]

Constitution. On oxidation with chromic acid, conhydrine yields Z-piperidyl-2-earboxylic acid. It is converted into Z-coniine either by reduction of the iodo-derivative (iodoconiine), C,HijNI, formed by the action of hydriodic acid and phosphorus at 180° or by hydrogenation of the mixture of coniceines produced, when it is dehydrated by phosphorus pentoxide in toluene. These and other observations indicate that the p- ygen atom must occur as a hydroxyl group, in the w-propyl side-chain in either the a- (XV) or (XVI) position, since the y-position would involve... [Pg.17]


See other pages where Hydroxyls dehydration is mentioned: [Pg.5]    [Pg.377]    [Pg.332]    [Pg.5]    [Pg.377]    [Pg.332]    [Pg.2788]    [Pg.234]    [Pg.203]    [Pg.82]    [Pg.134]    [Pg.516]    [Pg.270]    [Pg.34]    [Pg.154]    [Pg.491]    [Pg.256]    [Pg.256]    [Pg.50]    [Pg.291]    [Pg.49]    [Pg.61]    [Pg.198]    [Pg.476]    [Pg.153]    [Pg.153]    [Pg.156]    [Pg.100]    [Pg.52]    [Pg.73]    [Pg.19]    [Pg.97]    [Pg.464]    [Pg.167]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



© 2024 chempedia.info