Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxyl radical transformations

HO and Acid Precipitation. Hydroxyl radical is also active in the transformations of the key nitrogen and sulfur species that dominate acidified precipitation ... [Pg.75]

The dominant transformation process for trichloroethylene in the atmosphere is reaction with photochemically produced hydroxyl radicals (Singh et al. 1982). Using the recommended rate constant for this reaction at 25 °C (2.36x10 cm /molecule-second) and a typical atmospheric hydroxyl radical concentration (5x10 molecules/cm ) (Atkinson 1985), the half-life can be estimated to be 6.8 days. Class and Ballschmiter (1986) state it as between 3 and 7 days. It should be noted that the half-lives determined by assuming first-order kinetics represent the calculated time for loss of the first 50% of trichloroethylene the time required for the loss of the remaining 50% may be substantially longer. [Pg.211]

Lipid hydroperoxides are either formed in an autocatalytic process initiated by hydroxyl radicals or they are formed photochemically. Lipid hydroperoxides, known as the primary lipid oxidation products, are tasteless and odourless, but may be cleaved into the so-called secondary lipid oxidation products by heat or by metal ion catalysis. This transformation of hydroperoxides to secondary lipid oxidation products can thus be seen during chill storage of pork (Nielsen et al, 1997). The secondary lipid oxidation products, like hexanal from linoleic acid, are volatile and provide precooked meats, dried milk products and used frying oil with characteristic off-flavours (Shahidi and Pegg, 1994). They may further react with proteins forming fluorescent protein derivatives derived from initially formed Schiff bases (Tappel, 1956). [Pg.316]

The hydroxyl radical plays two essentially different roles (a) as a reactant mediating the transformations of xenobiotics and (b) as a toxicant that damages DNA. They are important in a number of environments (1) in aquatic systems under irradiation, (2) in the troposphere, which is discussed later, and (3) in biological systems in the context of superoxide dismutase and the role of iron. Hydroxyl radicals in aqueous media can be generated by several mechanisms ... [Pg.4]

Atrazine is successively transformed to 2,4,6-trihydroxy-l,3,5-triazine (Pelizzetti et al. 1990) by dealkylation of the alkylamine side chains and hydrolytic displacement of the ring chlorine and amino groups (Figure 1.3). A comparison has been made between direct photolysis and nitrate-mediated hydroxyl radical reactions (Torrents et al. 1997) the rates of the latter were much greater under the conditions of this experiment, and the major difference in the products was the absence of ring hydroxylation with loss of chloride. [Pg.5]

The transformation of isoquinoline has been studied both under photochemical conditions with hydrogen peroxide, and in the dark with hydroxyl radicals (Beitz et al. 1998). The former resulted in fission of the pyridine ring with the formation of phthalic dialdehyde and phthalimide, whereas the major product from the latter reaction involved oxidation of the benzene ring with formation of the isoquinoline-5,8-quinone and a hydroxylated quinone. [Pg.7]

The kinetics of the various reactions have been explored in detail using large-volume chambers that can be used to simulate reactions in the troposphere. They have frequently used hydroxyl radicals formed by photolysis of methyl (or ethyl) nitrite, with the addition of NO to inhibit photolysis of NO2. This would result in the formation of 0( P) atoms, and subsequent reaction with Oj would produce ozone, and hence NO3 radicals from NOj. Nitrate radicals are produced by the thermal decomposition of NjOj, and in experiments with O3, a scavenger for hydroxyl radicals is added. Details of the different experimental procedures for the measurement of absolute and relative rates have been summarized, and attention drawn to the often considerable spread of values for experiments carried out at room temperature (-298 K) (Atkinson 1986). It should be emphasized that in the real troposphere, both the rates—and possibly the products—of transformation will be determined by seasonal differences both in temperature and the intensity of solar radiation. These are determined both by latitude and altitude. [Pg.16]

The transformation of arenes in the troposphere has been discussed in detail (Arey 1998). Their destruction can be mediated by reaction with hydroxyl radicals, and from naphthalene a wide range of compounds is produced, including 1- and 2-naphthols, 2-formylcinnamaldehyde, phthalic anhydride, and with less certainty 1,4-naphthoquinone and 2,3-epoxynaphthoquinone. Both 1- and 2-nitronaphthalene were formed through the intervention of NO2 (Bunce et al. 1997). Attention has also been directed to the composition of secondary organic aerosols from the photooxidation of monocyclic aromatic hydrocarbons in the presence of NO (Eorstner et al. 1997) the main products from a range of alkylated aromatics were 2,5-furandione and the 3-methyl and 3-ethyl congeners. [Pg.20]

It has been suggested that the transformations accomplished by the brown-rot fungus Gleophyllum striatum may involve hydroxyl radicals, and this is supported by the overall similarity in the structures of the fungal metabolites with those produced with Fenton s reagent (Wetzstein et al. 1997). [Pg.76]

Thus, two routes of transformation are possible for the Fe2+(H202) complex one-electron transfer to form the hydroxyl radical and two-electron transfer to form the ferryl ion. It is difficult to prove experimentally the formation of the ferryl ions because they are very reactive, so that this route of interaction of H202 with Fe2+ remains hypothetical to a great extent. Another change in the mechanism of H202 decomposition with increasing pH is related to the acidic dissociation of H02 (pKa = 4.4)... [Pg.386]

The very active unstable tin(III) ion is supposed to play an important role in this chain mechanism of tin(II) oxidation. Cyclohexane, introduced in the system Sn(II) + dioxygen, is oxidized to cyclohexanol as the result of the coupled oxidation of tin and RH. Hydroxyl radicals, which are very strong hydrogen atom acceptors, attack cyclohexane (RH) with the formation of cyclohexyl radicals that participate in the following transformations ... [Pg.404]

Finally, it makes possible the oxidation of hydrocarbon to a significant depth, and when the RH molecule contains several methyl groups, the catalyst allows all these groups to be transformed into carboxyls. This last specific feature is insufficiently studied so far. Perhaps, it is associated with the following specific features of oxidation of alkylaromatic hydrocarbons. The thermal decomposition of formed hydroperoxide affords hydroxyl radicals, which give phenols after their addition at the aromatic ring... [Pg.410]

Xanthine oxidase, a widely used source of superoxide, has been frequently applied for the study of the effects of superoxide on DNA oxidation. Rozenberg-Arska et al. [30] have shown that xanthine oxidase plus excess iron induced chromosomal and plasmid DNA injury, which was supposedly mediated by hydroxyl radicals. Ito et al. [31] compared the inactivation of Bacillus subtilis transforming DNA by potassium superoxide and the xanthine xanthine oxidase system. It was found that xanthine oxidase but not K02 was a source of free radical mediated DNA inactivation apparently due to the conversion of superoxide to hydroxyl radicals in the presence of iron ions. Deno and Fridovich [32] also supposed that the single strand scission formation after exposure of DNA plasmid to xanthine oxidase was mediated by hydroxyl radical formation. Oxygen radicals produced by xanthine oxidase induced DNA strand breakage in promotable and nonpromotable JB6 mouse epidermal cells [33]. [Pg.837]

The most important transformation process for di-w-octylphthalate present in the atmosphere as an aerosol is reaction with photochemically produced hydroxyl radicals. The half-life for this reaction has been estimated to be 4.5 14.8 hours (Howard et al. 1991). Actual atmospheric half-lives may be longer since phthalate esters sorbed to wind-entrained particulates may have long atmospheric residence times (Vista Chemical 1992). Direct photolysis in the atmosphere is not expected to be an important process (EPA 1993a HSDB 1995). [Pg.98]

Bunce, N.J., Nakai, J.S., and Yawching, M. A model for estimating the rate of chemical transformation of a VOC in the troposphere by two pathways photolysis by sunlight and hydroxyl radical attack, Chemosphere, 22(3/4) 305-315, 1991. [Pg.1638]

Thianthrene 5-oxide is converted, in concentrated sulfuric acid, into a solution of T (62JA4798) sulfuric or perchloric acid in nitromethane can also be used (63TL993). One view is that this transformation involves homolysis of the O-protonated sulfoxide, with hydroxyl radical as byproduct, though the involvement of a dication has also been suggested (63JOC2828). [Pg.337]

The major fate mechanism of atmospheric 2-hexanone is photooxidation. This ketone is also degraded by direct photolysis (Calvert and Pitts 1966), but the reaction is estimated to be slow relative to reaction with hydroxyl radicals (Laity et al. 1973). The rate constant for the photochemically- induced transformation of 2-hexanone by hydroxyl radicals in the troposphere has been measured at 8.97x10 cm / molecule-sec (Atkinson et al. 1985). Using an average concentration of tropospheric hydroxyl radicals of 6x10 molecules/cm (Atkinson et al. 1985), the calculated atmospheric half-life of 2-hexanone is about 36 hours. However, the half-life may be shorter in polluted atmospheres with higher OH radical concentrations (MacLeod et al. 1984). Consequently, it appears that vapor-phase 2-hexanone is labile in the atmosphere. [Pg.61]


See other pages where Hydroxyl radical transformations is mentioned: [Pg.61]    [Pg.220]    [Pg.858]    [Pg.88]    [Pg.9]    [Pg.20]    [Pg.593]    [Pg.266]    [Pg.263]    [Pg.301]    [Pg.64]    [Pg.90]    [Pg.219]    [Pg.18]    [Pg.25]    [Pg.21]    [Pg.838]    [Pg.917]    [Pg.936]    [Pg.204]    [Pg.108]    [Pg.108]    [Pg.119]    [Pg.119]    [Pg.164]    [Pg.148]    [Pg.86]    [Pg.57]    [Pg.60]    [Pg.56]    [Pg.58]    [Pg.59]    [Pg.224]    [Pg.224]   
See also in sourсe #XX -- [ Pg.59 , Pg.62 , Pg.65 , Pg.218 , Pg.230 , Pg.244 , Pg.259 , Pg.425 ]




SEARCH



Hydroxylation radical

Radical hydroxylations

© 2024 chempedia.info