Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxy amines from imines

The dicarbonyl compoimd 51 was oxidized to the anhydride 52, which subsequently reacted with primary or secondary amines to form a-amino acids, a-amino amides and dipeptides 53 (Scheme 14) [48]. 3-Hydroxy j8-lactams obtained from imines derived from carbohydrates [49,50] or prepared via the Sharpless AD reaction [51-53] were directly oxidized to anhydrides by treatment with NaOCl and TEMPO. Anhydrides 54-56 were used for the synthesis of compounds related to the family of polyoxins represented by 57 (Scheme 15) [49-53]. [Pg.109]

An interesting extension of this method involves the reaction of Af-silyl oxyketene imines derived from cyanohydrins (Scheme 19) [81]. By judicious selection of the protecting group on the oxygen, highly functionalized (3-hydroxy cyanohydrins can be accessed with high levels of enantio- and diastereoselectivity. These products can then be transformed into a diversity of structural motifs (amines, aldehydes, imines, ketones) important for the synthesis of polyketide and other classes of natural products. In addition, the ethers can be easily converted to enantiomerically enriched unsymmetrical benzoins, thus revealing the synthetic equivalency of A-silyl oxyketene imines as acyl anions (Scheme 19). [Pg.78]

Originally, a C-20 amine (prepared from a bisnorcholanic acid) was converted into its 7V-chloro derivative, dehydrohalogenated to the imine, converted into the A-acetylenanime, reacted with perbenzoic acid, then hydrolyzed to the 17a-hydroxy-20-ketone ... [Pg.187]

Several methods for asymmetric C —C bond formation have been developed based on the 1,4-addition of chiral nonracemic azaenolates derived from optically active imines or enamines. These methods are closely related to the Enders and Schollkopf procedures. A notable advantage of all these methods is the ready removal of the auxiliary group. Two types of auxiliaries were generally used to prepare the Michael donor chiral ketones, such as camphor or 2-hydroxy-3-pinanone chiral amines, in particular 1-phenylethanamine, and amino alcohol and amino acid derivatives. [Pg.980]

Polar C=Y double bonds (Y = NR, O, S) with electrophilic carbon have been added to suifinic acids under formation of sulfones. As in the preceding section one must distinguish between carbonyl groups and their derivatives on the one hand, and carboxylic acids (possessing leaving groups at the electrophilic carbon) on the other. Aldehydes " of sufficient reactivity—especially mono-substituted glyoxals - —and their aryl or arylsulfonyl imines have been added to suifinic acids (in a reversible equilibrium) to yield a-hydroxy or a-amino sulfones the latter could also be obtained from the former in the presence of primary amines (equation 26). [Pg.176]

Unsymmetric compartmental ligands that allow for the controlled synthesis of unsymmetric Ni2 or heterobimetallic NiM complexes have received particular attention.1876,1892 A wide range of such ligands derived particularly from 2-hydroxy-3-hydroxymethyl-5-methylbenzaldehyde and 2-hydroxy-3-hydroxymethyl-bromo-benzaldehyde has now been prepared and used for Ni com-plexation. These ligands have monopodal iminic pendent arms and either mono- or dipodal aminic pendent arms and the terminal donors of the pendent arms can be provided by pyridine, imidazole, and tertiary amino groups.1893-1897 Complexes are usually prepared by reaction of the requisite Ni11 salts with the preformed ligand. [Pg.430]

The plausible mechanism of the reaction is shown in Fig. 25. The reaction probably proceeds through the activation of imine (formed in situ from the o-hydroxy benzaldehyde and the aromatic amine) by the catalyst followed by the addition and subsequent cyclization of the enol ether, resulting in the formation of the fused acetal. Ionic liquids are stable enough with amines and water and also effectively activate the imines to undergo cyclization. The recovered ionic liquid can be re-used with gradual decrease in the efficiency of the method. The hydro-phobic nature of the ionic liquid also helps in recovery of the catalyst. [Pg.249]

Therefore, in principal, condensation of a primary amine with an enantiomerically pure ketone should allow asymmetric synthesis of a-substituted primary amines. This approach has been applied to the synthesis of a-amino acids, for example, using the imine prepared from a-amino esters and (l.S, 2,S ,5,S )-2-hydroxy-3-pinanone, via an amino-substituted ester enolate anion with some success39 40. Application of this approach to simple primary amines has seldom been reported. [Pg.673]

A large variety of aromatic amines react with isatins to give anils (132).169,232,269,305,312,411 413 The imine from isatin and o-hydroxy-aniline forms complexes with copper acetate and zinc iodide.413 Reaction of these anils (132) with phenylhydrazine gives the isatin-3-phenylhydrazone.411 The imine 132 (R = 5-Me, R = H, Ar = p-tolyl)... [Pg.37]

Two mechanisms have been proposed for the Knoevenagel reaction. In one, the role of the amine is to form an imine or iminium salt (378) which subsequently reacts with the enolate of the active methylene compound. Under normal circumstances elimination of the amine would give the cinnamic acid derivative (379). However, when an o-hydroxy group is present in the aromatic aldehyde intramolecular ring closure to the coumarin can occur. The timing of the various steps may be different from that shown (Scheme 118). [Pg.804]

In 2000, the group of Banik et al. reported the enantiospecific synthesis of 3-hydroxy-2-azetidinones by microwave assisted Staudinger reaction [51]. Chiral imines, derived from chiral aldehydes and achiral amines, reacted with methoxy- or acet-oxy-acetyl chloride to afford a single, optically pure c/s-p-lactam, (Scheme 7). [Pg.109]

These are the most favourable of all and the precursors, such as the hydroxy acids, e.g. 15, cannot usually be isolated, though the carboxylate salts are stable. The only important thing is to get the oxidation level of the precursor right. Using cyclic amines as examples, a fully saturated ring 45 would come from an alkylation reaction on 46 X = a leaving group. Imines 47 or enamines 49 would come from aldehydes or ketones 48. [Pg.221]

For example, N-(2-hydroxyphenyl)imines 9 (R = alkyl, aryl) together with chiral zirconium catalysts generated in situ from binaphthol derived ligands were used for the asymmetric synthesis of a-amino nitriles [17], the diastereo- and/or enantioselective synthesis of homoallylic amines [18], the enantioselective synthesis of simple //-amino acid derivatives [19], the diastereo- and enantioselective preparation of a-hydroxy-//-amino acid derivatives [20] or aminoalkyl butenolides (aminoalkylation of triisopropylsilyloxyfurans, a vinylogous variant of the Mannich reaction) [21]. A good example for the potential of the general approach is the diastereo- and enantioselective synthesis of (2R,3S)-3-phenylisoserine hydrochloride (10)... [Pg.136]

Hydroxy- (8a), 2-mercapto- (8b) and 2-amino-l,3,4-oxadiazoles (8c) are in equilibrium with the tautomeric oxadiazolines (9a), (9b) and (9c) respectively. Evidence from UV (72CJC3079) and IR (Section 4.23.2.2.3) spectra supports structure (9a) for A2-l,3,4-oxadiazolin-5-ones and structure (9b) for A2-l,3,4-oxadiazoline-5-thiones. The UV and IR spectra, fluorescence and p/iT values of 2-amino-l,3,4-oxadiazoles indicate that the amine tautomer (8c or d) rather than the imine tautomer (9c or d) predominates (69BSF870, 874, 64CR(258)4579>. [Pg.430]

The original Kabachnik-Fields procedure employing ammonia as the amine component used ammonia in ethanol and the reactions were performed in sealed vessels at circa 100°C.90,123 This method avoids such conditions by using ammonium acetate as the source of ammonia, and it is also thought to act as an acid catalyst for imine formation other ammonium salts were unsatisfactory. Addition of water to produce a homogeneous reaction mixture resulted in diethyl 1-hydroxy-1-benzylphosphonate formation (i.e. from direct attack of diethyl phosphite 25 on benzaldehye, a common side reaction in the Kabachnik-Fields reaction). The yields of this reaction are serviceable, and better for aromatic than aliphatic aldehydes. The product 58 may be further purified by crystallization as the hydrochloride salt by treatment of 58 with hydrogen chloride in ethanol/diethyl ether.122... [Pg.205]


See other pages where Hydroxy amines from imines is mentioned: [Pg.27]    [Pg.84]    [Pg.228]    [Pg.228]    [Pg.288]    [Pg.228]    [Pg.934]    [Pg.101]    [Pg.88]    [Pg.113]    [Pg.59]    [Pg.70]    [Pg.507]    [Pg.537]    [Pg.238]    [Pg.27]    [Pg.518]    [Pg.672]    [Pg.199]    [Pg.304]    [Pg.221]    [Pg.940]    [Pg.191]    [Pg.1654]    [Pg.388]    [Pg.71]    [Pg.1348]    [Pg.538]    [Pg.291]    [Pg.88]    [Pg.77]    [Pg.79]    [Pg.507]   
See also in sourсe #XX -- [ Pg.1674 ]




SEARCH



Amination hydroxy

Amination imines

Amines Imines

From aminals

From amines

From imines

Hydroxy amines

Hydroxy amines imines

Imine aminal

© 2024 chempedia.info