Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxides stability

The presence of lead and cadmium in the cement matrix with those concentrations did not lead to decreasing of samples strengths. Lead showed better improvement in stabilization and then cadmium. Lead dissolution at low pH values corresponded closely with the loss of aluminum, suggesting an ettringite or ferrite stabilization mechanism. The leachability of cadmium is continuous as the pH decreases from 9.5 to lower values during the batch leaching steps, and confirms a simple insoluble hydroxide stabilization mechanism and pH-controlled dissolution. [Pg.186]

Boclair, J. W., Braterman, P. S., Jiang, J. P., Lou, S. W. and Yarberry, F. (1999). Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution. Chem. Mater. 11, 303. [Pg.321]

Complexed metal ion stabilized alkali metal polysilicates can also be used, such as copper ethylenediamine hydroxide stabilized sodium polysilicate made by mixing... [Pg.206]

Complexed metal ion stabilized alkali metal polysilicates can also be used, such as copper ethylenediamine hydroxide stabilized sodium polysilicate made by mixing copper ethylenediamine with colloidal silica and then the silicate, or the stabilized polysilicates of U.S. Pat. No. 3,715,224. [Pg.796]

Hydrolysis constants are usually expressed as proton ionizations in the tables except when the author gives them as hydroxide stability constants and faiis to give the vaiue of the constant for the ionization of water employed In the calculations. [Pg.620]

Trichloroethylene is not attacked by dilute acids or alkalis, but when heated with sodium hydroxide under pressure it yields sodium gly-collate. In the presence of light and oxygen dichloroethanoyl chloride is formed, which can react with any moisture present to give small amounts of highly corrosive HCl. Numerous stabilizers have been patented. [Pg.404]

It is quite clear, first of all, that since emulsions present a large interfacial area, any reduction in interfacial tension must reduce the driving force toward coalescence and should promote stability. We have here, then, a simple thermodynamic basis for the role of emulsifying agents. Harkins [17] mentions, as an example, the case of the system paraffin oil-water. With pure liquids, the inter-facial tension was 41 dyn/cm, and this was reduced to 31 dyn/cm on making the aqueous phase 0.00 IM in oleic acid, under which conditions a reasonably stable emulsion could be formed. On neutralization by 0.001 M sodium hydroxide, the interfacial tension fell to 7.2 dyn/cm, and if also made O.OOIM in sodium chloride, it became less than 0.01 dyn/cm. With olive oil in place of the paraffin oil, the final interfacial tension was 0.002 dyn/cm. These last systems emulsified spontaneously—that is, on combining the oil and water phases, no agitation was needed for emulsification to occur. [Pg.504]

The most stable protected alcohol derivatives are the methyl ethers. These are often employed in carbohydrate chemistry and can be made with dimethyl sulfate in the presence of aqueous sodium or barium hydroxides in DMF or DMSO. Simple ethers may be cleaved by treatment with BCI3 or BBr, but generally methyl ethers are too stable to be used for routine protection of alcohols. They are more useful as volatile derivatives in gas-chromatographic and mass-spectrometric analyses. So the most labile (trimethylsilyl ether) and the most stable (methyl ether) alcohol derivatives are useful in analysis, but in synthesis they can be used only in exceptional cases. In synthesis, easily accessible intermediates of medium stability are most helpful. [Pg.161]

The proton transfer equilibrium that interconverts a carbonyl compound and its enol can be catalyzed by bases as well as by acids Figure 18 3 illustrates the roles of hydroxide ion and water m a base catalyzed enolization As m acid catalyzed enolization protons are transferred sequentially rather than m a single step First (step 1) the base abstracts a proton from the a carbon atom to yield an anion This anion is a resonance stabilized species Its negative charge is shared by the a carbon atom and the carbonyl oxygen... [Pg.763]

Lead glance Lead glass Lead heat stabilizers Lead hydrogen arsenate Lead hydroxide... [Pg.558]

In the first step cumene is oxidized to cumene hydroperoxide with atmospheric air or air enriched with oxygen ia one or a series of oxidizers. The temperature is generally between 80 and 130°C and pressure and promoters, such as sodium hydroxide, may be used (17). A typical process iavolves the use of three or four oxidation reactors ia series. Feed to the first reactor is fresh cumene and cumene recycled from the concentrator and other reactors. Each reactor is partitioned. At the bottom there may be a layer of fresh 2—3% sodium hydroxide if a promoter (stabilizer) is used. Cumene enters the side of the reactor, overflows the partition to the other side, and then goes on to the next reactor. The air (oxygen) is bubbled ia at the bottom and leaves at the top of each reactor. [Pg.95]

The magnesia and alumina suspension is prepared by treatment of an aqueous solution, containing aluminum and magnesium salt in the desired proportion, with sodium hydroxide. The coprecipitated aluminum and magnesium hydroxides are collected by filtration, washed free of soluble salts, and stabilized by the addition of a suitable hexatol. [Pg.200]

Stabilizer Synthesis. The selected alkyltin chloiide intermediate reacts with either a carboxyhc acid or a mercaptan in the presence of an appropriate base, such as sodium hydroxide, to yield the alkyltin carboxylate or alkyltin mercaptide heat stabihzet. Alternatively, the alkyltin chloride can react with the base to yield the alkyltin oxide, which may or may not be isolated, for subsequent condensation with the selected carboxyhc acid or mercaptan. [Pg.547]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

Suitable catalysts include the hydroxides of sodium (119), potassium (76,120), calcium (121—125), and barium (126—130). Many of these catalysts are susceptible to alkali dissolution by both acetone and DAA and yield a cmde product that contains acetone, DAA, and traces of catalyst. To stabilize DAA the solution is first neutralized with phosphoric acid (131) or dibasic acid (132). Recycled acetone can then be stripped overhead under vacuum conditions, and DAA further purified by vacuum topping and tailing. Commercial catalysts generally have a life of about one year and can be reactivated by washing with hot water and acetone (133). It is reported (134) that the addition of 0.2—2 wt % methanol, ethanol, or 2-propanol to a calcium hydroxide catalyst helps prevent catalyst aging. Research has reported the use of more mechanically stable anion-exchange resins as catalysts (135—137). The addition of trace methanol to the acetone feed is beneficial for the reaction over anion-exchange resins (138). [Pg.493]

Toluhydroquinone and methyl / fX butyUiydroquinone provide improved resin color retention 2,5-di-/-butyIhydroquinone also moderates the cure rate of the resin. Quaternary ammonium compounds, such as benzyl trimethyl ammonium hydroxide, are effective stabilizers in combination with hydroquinones and also produce beneficial improvements in color when promoted with cobalt octoate. Copper naphthenate is an active stabilizer at levels of 10 ppm at higher levels (150 ppm) it infiuences the cure rate. Tertiary butylcatechol (TBC) is a popular stabilizer used by fabricators to adjust room temperature gelation characteristics. [Pg.317]


See other pages where Hydroxides stability is mentioned: [Pg.5736]    [Pg.348]    [Pg.3759]    [Pg.1167]    [Pg.74]    [Pg.192]    [Pg.5736]    [Pg.348]    [Pg.3759]    [Pg.1167]    [Pg.74]    [Pg.192]    [Pg.52]    [Pg.68]    [Pg.281]    [Pg.206]    [Pg.389]    [Pg.764]    [Pg.839]    [Pg.997]    [Pg.404]    [Pg.449]    [Pg.489]    [Pg.329]    [Pg.550]    [Pg.69]    [Pg.69]    [Pg.92]    [Pg.189]    [Pg.177]    [Pg.179]    [Pg.140]    [Pg.259]    [Pg.259]    [Pg.469]   
See also in sourсe #XX -- [ Pg.2 , Pg.297 ]




SEARCH



© 2024 chempedia.info