Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydronium reaction

Because of the mentioned leveling effect of the solvent (or excess acid itself acting as such) the acidity cannot exceed that of its conjugate acid. In the case of water the limiting acidity is that of HsO. Proton-ated water, H30 (hydronium ion), was first postulated in 1907, and its preeminent role in acid-catalyzed reactions in aqueous media was first realized in the acid-base theory of Bronsted and Lowry. Direct experimental evidence for the hydronium ion in solution and in the... [Pg.189]

According to this mechanism, the reaction rate is proportional to the concentration of hydronium ion and is independent of the associated anion, ie, rate = / [CH3Hg][H3 0 ]. However, the acid anion may play a marked role in hydration rate, eg, phosphomolybdate and phosphotungstate anions exhibit hydration rates two or three times that of sulfate or phosphate (78). Association of the polyacid anion with the propyl carbonium ion is suggested. Protonation of propylene occurs more readily than that of ethylene as a result of the formation of a more stable secondary carbonium ion. Thus higher conversions are achieved in propylene hydration. [Pg.110]

Derive the general expression for the observed rate constant for hydrolysis of A as a function of pH. Assume, as is the case experimentally, that intramolecular general acid catalysis completely outweighs intermolecular catalysis by hydronium ion in the pH range of interest. Does the form of your expression agree with the pH rate profile given for this reaction in Fig. 8.6 (p. 489) ... [Pg.498]

A second way to achieve constancy of a reactant is to make use of a buffer system. If the reaction medium is water and B is either the hydronium ion or the hydroxide ion, use of a pH buffer can hold Cb reasonably constant, provided the buffer capacity is high enough to cope with acids or bases generated in the reaction. The constancy of the pH required depends upon the sensitivity of the analytical method, the extent of reaction followed, and the accuracy desired in the rate constant determination. [Pg.24]

Except for those reactions whose characteristic rate constants vary linearly with the hydronium or hydroxide ion concentration, the most effective presentation of pH-rate data is a graphical one. Two kinds of plot pH-rate profiles) are commonly seen ... [Pg.273]

Now suppose that only the monoanionic form of the dibasic acid H2S undergoes reaction and that neither the hydronium nor the hydroxide ion is directly involved. The kinetic scheme is, therefore. [Pg.287]

Reactions in water often involve a ubitiquous species known as hydronium (H3O+). Is hydronium properly described as an isolated ion, or at the other extreme, as a proton dissolved in water ... [Pg.50]

In studies of the hydration and dehydration of pteridine and the methylpteridines, but not levelled out as solutions were made more acid. This was explained by assuming that hydronium ion catalysis of the reactions proceeded only by the formation of the cations of HY+ and HX+, respectively. This effect is strikingly shown by 1,3,8-triazanaphthalene, for which the pH-rate profile of is V-shaped between pH 6.82 and 10.29 but levels out and remains constant from pH 5.3 down to, at least, 2.4. ... [Pg.63]

In view of the importance of the hydronium ion, HjO, and dissolved oxygen as electron acceptors in corrosion reactions, some values of the redox potentials E and chemical potentials n for the equilibria... [Pg.60]

In the glass-bottle industry the bottles can be cooled in a dilute SOj/SO, atmosphere to increase chemical resistance. A similar effect has been noted with vitreous enamel. It has been postulated that a thin layer of —OH groups or — OH—HjO (hydronium) ions is adsorbed on the surface of a fired enamel. These ions are transformed into — OSO, or —OSO3 in the presence of oxides of sulphur which are more resistant to further acid attack. It is known that the acid resistance of a recently fired enamel improves on ageing, probably due to the enamel reaction with SOj/SO, in the atmosphere and it is quite common for the grading to improve from Class A to Class AA (BS 1344). [Pg.742]

Notice that water can act either as an acid or as a base, d.epending on the circumstances. In its reaction with HC1, water is a base that accepts a proton to give the hydronium ion, In its reaction with amide ion, -NH2, however,... [Pg.50]

Whenever H+(aq) might appear in an equation for a reaction, it is replaced by the hydronium ion, H30+, and a molecule of water is added to the other side of the equation. We write (55) in the form... [Pg.194]

As an example of the problem of species in solution, consider the case of a solution made by dissolving some potassium chrome alum, KCrfSO s-12H20, in water. On testing, the solution is distinctly acidic. A currently accepted explanation of the observed acidity is based upon the assumption that, in water solution, chromic ion is associated with six H20 molecules in the complex ion, Cr(H20) a. This complex ion can act as a weak acid, dissociating to give a proton (or hydronium ion). Schematically, the dissociation can be represented as the transfer of a proton from one water molecule in the Cr(H20) 3 complex to a neighboring H20 to form a hydronium ion, H30+. Note that removal of a proton from an H20 bound to a Cr+3 leaves an OH- group at that position. The reaction is reversible and comes to equilibrium ... [Pg.396]

Values interpolated from the data in Table 125 and ascribed to reaction via specific hydronium ion only. [Pg.204]

Kresge and Chiang480 measured the rate coefficients for detritiation of [1-3H]-2,4,6-trimethoxybenzene in acetate buffers and found the first-order rate coefficient (lO7 ) to increase from 2.5 at 0.01 M acetic acid to 8.3 at 0.1 M acetic acid, whereas if the reaction was specific acid-catalysed no change in rate should have been observed. A similar technique to that described above for separation of the rate coefficients due to hydronium ions and other acids was used, the values for the former being obtained using dilute hydrochloric acid at which acidities no undissociated acid was present (Table 131). Rate coefficients were then measured... [Pg.209]

For water, the second-order rate coefficient was determined as 9.5 x 10 12 by extrapolation from data at higher temperatures and using the presence of hydroxide ion to suppress any reaction with hydronium ion. For reaction with solutions of biphosphate and ammonium ions, since reaction via hydronium ions in these media is negligible (ca. 1 % of the total rate), the second-order rate coefficients were evaluated from exchange data at a single acid concentration as k2 (H2PC>4 ) = 3.89 xlO-7 and (NH ) = 5.0 x 10-9, the latter value being corrected for the water-catalysed reaction. [Pg.210]

Thomas and Long488 also measured the rate coefficients for detritiation of [l-3H]-cycl[3,2,2]azine in acetic acid and in water and since the rates relative to detritiation of azulene were similar in each case, a Bronsted correlation must similarly hold. The activation energy for the reaction with hydronium ion (dilute aqueous hydrochloric acid, = 0.1) was determined as 16.5 with AS = —11.3 (from second-order rate coefficients (102At2) of 0.66, 1.81, 4.80, and 11.8 at 5.02, 14.98, 24.97, and 34.76 °C, respectively). This is very close to the values of 16.0 and —10.1 obtained for detritiation of azulene under the same condition499 (below) and suggests the same reaction mechanism, general acid catalysis, for each. [Pg.215]

Extension of these studies to formic acid media (containing 4 vol. % ethylene glycol and 1.3 vol. % water) showed that for protodeboronation of 4-methoxy-benzeneboronic acid at 25 °C) rates were invariant of a tenfold variation in acidity produced by adding sodium formate (0.05-0.20 M) to the medium (Table 194), and in this range the concentration of molecular formic acid is essentially constant. This was, therefore, assumed to be the reactive species. At higher acidities the rate increased, which was attributed to the increase in concentration of hydronium ions and protonated formic acid ions which bring about reaction more readily625. [Pg.291]

N-substituted phenylhydroxylamine derivatives, e.g. N-acetyl and N-sulphonic acid, also form the para-aminophenol", but more bulky groups prevent reaction, it is thought by steric hindrance to the approach of the hydronium ion. -substituted phenylhydroxylamines, on the other hand form only the ortho product, it is thought via an intramolecular rearrangement, e.g. [Pg.462]

Because at equilibrium virtually all the HCl molecules have donated their protons to water, HCl is classified as a strong acid. The proton transfer reaction essentially goes to completion. The H30+ ion is called the hydronium ion. It is strongly hydrated in solution, and there is some evidence that a better representation of the species is H904+ (or even larger clusters of water molecules attached to a proton). A hydrogen ion in water is sometimes represented as H + (aq), but we must remember that H+ does not exist by itself in water and that H CC is a better representation. [Pg.516]

In this reaction, the base O2- accepts two protons from the hydronium ions present in the hydrochloric acid solution. [Pg.520]

The concentrations of H30 + and OH are very low in pure water, which explains why pure water is such a poor conductor of electricity. To imagine the very tiny extent of autoprotolysis, think of each letter in this book as a water molecule. We would need to search through more than 50 books to find one ionized water molecule. The autoprotolysis reaction is endothermic (AH° = +56 kj-mol l), and so we can expect Kw to increase with temperature, and aqueous solutions to have higher concentrations of both hydronium and hydroxide ions at higher temperatures. Unless otherwise stated, all the calculations in this chapter will be for 25°C. [Pg.521]

Below is the titration curve for the neutralization of 25 mL of a monoprotic acid with a strong base. Answer the following questions about the reaction and explain your reasoning in each case, (a) Is the acid strong or weak (b) What is the initial hydronium ion concentration of the acid (c) What is K, for the acid (d) What is the initial concentration of the... [Pg.599]

One of the most fundamental chemical reactions is the combination of a hydroxide ion (OH ) and a hydronium ion (H3 0+) to produce two molecules of water OH" (a g) + H3 (a g) 2 H2 O (/) A molecular view of this reaction (Figure 4-7f shows that the hydroxide anion accepts one hydrogen atom from the hydronium cation. Taking account of charges, it is a hydrogen cation (H ) that is transferred. The reaction occurs rapidly when H3 O and OH ions collide. The hydroxide anion accepts a hydrogen cation from the hydronium cation, forming two neutral water molecules. [Pg.236]

Many books abbreviate the hydronium ion as H (a g) or just H. We prefer H3 O because it serves as a reminder of the molecular structure of the hydronium ion and of the proton-transfer nature of acid-base reactions. [Pg.236]


See other pages where Hydronium reaction is mentioned: [Pg.140]    [Pg.296]    [Pg.464]    [Pg.401]    [Pg.588]    [Pg.275]    [Pg.279]    [Pg.302]    [Pg.62]    [Pg.71]    [Pg.163]    [Pg.689]    [Pg.209]    [Pg.210]    [Pg.213]    [Pg.215]    [Pg.216]    [Pg.216]    [Pg.218]    [Pg.219]    [Pg.279]    [Pg.291]    [Pg.309]    [Pg.311]    [Pg.1033]    [Pg.324]   
See also in sourсe #XX -- [ Pg.209 , Pg.210 , Pg.240 , Pg.241 ]




SEARCH



Hydronium

Reactions of Hydrated Hydronium Clusters

© 2024 chempedia.info