Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis malathion metabolism

The oxidation of OPs can bring detoxication as well as activation. Oxidative attack can lead to the removal of R groups (oxidative dealkylation), leaving behind P-OH, which ionizes to PO . Such a conversion looks superficially like a hydrolysis, and was sometimes confused with it before the great diversity of P450-catalyzed biotransformations became known. Oxidative deethylation yields polar ionizable metabolites and generally causes detoxication (Eto 1974 Batten and Hutson 1995). Oxidative demethy-lation (0-demethylation) has been demonstrated during the metabolism of malathion. [Pg.197]

Metabolites that are less reactive than suicide inhibitors may impact more distant enzymes, within the same cell, adjacent cells, or even in other tissues and organs, far removed from the original site of primary metabolism. For example, organopho-sphates (OPs), an ingredient in many pesticides, are metabolized by hepatic CYPs to intermediates, which, when transported to the nervous system, inhibit esterases that are critical for neural function. Acetylcholinesterase (AChE) catalyzes the hydrolysis of the ester bond in the neurotransmitter, acetylcholine, allowing choline to be recycled by the presynaptic neurons. If AChE is not effectively hydrolyzed by AChE in this manner, it builds up in the synapse and causes hyperexcitation of the postsynaptic receptors. The metabolites of certain insecticides, such as the phos-phorothionates (e.g., parathion and malathion) inhibit AChE-mediated hydrolysis. Phosphorothionates contain a sulfur atom that is double-bonded to the central phosphorus. However, in a CYP-catalyzed desulfuration reaction, the S atom is... [Pg.62]

Hydrolytic reactions. There are numerous different esterases responsible for the hydrolysis of esters and amides, and they occur in most species. However, the activity may vary considerably between species. For example, the insecticide malathion owes its selective toxicity to this difference. In mammals, the major route of metabolism is hydrolysis to the dicarboxylic acid, whereas in insects it is oxidation to malaoxon (Fig. 5.12). Malaoxon is a very potent cholinesterase inhibitor, and its insecticidal action is probably due to this property. The hydrolysis product has a low mammalian toxicity (see chap. 7). [Pg.141]

The onset of symptoms depends on the particular organophosphorus compound, but is usually relatively rapid, occurring within a few minutes to a few hours, and the symptoms may last for several days. This depends on the metabolism and distribution of the particular compound and factors such as lipophilicity. Some of the organophosphorus insecticides such as malathion, for example (chap. 5, Fig. 12), are metabolized in mammals mainly by hydrolysis to polar metabolites, which are readily excreted, whereas in the insect, oxidative metabolism occurs, which produces the cholinesterase inhibitor. Metabolic differences between the target and nontarget species are exploited to maximize the selective toxicity. Consequently, malathion has a low toxicity to mammals such as the rat in which the LD50 is about 10 g kg-1. [Pg.346]

There are two types of esterases that are important in metabolizing insecticides, namely, carboxylesterases and phosphatases (also called phosphorotriester hydrolases or phosphotriesterases). Carboxylesterases, which are B-esterases, play significant roles in degrading organophosphates, carbamates, pyrethroids, and some juvenoids in insects. The best example is malathion hydrolysis, which yields both a- and (i-monoacids and ethanol (Figure 8.10). [Pg.149]

Metabolism of the local anaesthetic procaine provides an example of esterase action, as shown in figure 4.42. This hydrolysis may be carried out by both a plasma esterase and a microsomal enzyme. The insecticide malathion is metabolized by a carboxyl esterase in mammals, rather than undergoing oxidative desulphuration as in insects (figure 5,10). [Pg.185]

The metabolism of malathion in warm-blooded animals proceeds via another route. As the first metabolic step, a-malathion monocarbonic acid (91) is formed by hydrolysis of one of the ester bonds. This metabolite is virtually nontoxic to warmblooded animals (Krueger and O Brien, 1959 Chen et al., 1969). [Pg.148]


See other pages where Hydrolysis malathion metabolism is mentioned: [Pg.38]    [Pg.281]    [Pg.35]    [Pg.181]    [Pg.399]    [Pg.806]    [Pg.262]    [Pg.316]    [Pg.569]    [Pg.557]    [Pg.357]   
See also in sourсe #XX -- [ Pg.161 ]




SEARCH



Hydrolysis metabolism

Malathion

Malathion metabolism

© 2024 chempedia.info