Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenation 3-methyl-2-buten

The amides of alkali and alkaline-earth metals catalyse hydrogen exchange in hydrocarbons even in the absence of liquid ammonia. For example, the heterogeneous deuterium exchange of benzene and 2-methylbutene-l occurs with a considerable velocity on solid KND2 and Ca(ND2)2 at 70°. This gives rise to the isomerization of 2-methyl-butene-1 to 2-methylbutene-2 (Shatenshtein et al., 1958a). [Pg.163]

Kuraray An intermediate for 3-methyl 1,5-pentane diol Rh4(CO)12 with phosphorus ligand as the precatalyst hydroformylation of 2-methyl buten-4-ol followed by hydrogenation Reaction 5.10... [Pg.98]

The palladium-polyvinyl alcohol catalyst has proved useful in the reduction of acetylenes to ethylenes (15). Thus, 3-methyl-butyn-l-ol-3 has been reduced to 3-methyl-buten-l-ol-3 in excellent yield. Furthermore it was also advantageously utilized in the hydrogenation of cystine, in which case only 10 mg. of palladium were required (15a), and in the catalytic hydrogenation of apozymase (15b). [Pg.133]

The reaction of hydrogenation of the 3-methyl,butenal could be achieved in gaseous phase on well characterized surfaces of platinum exhibiting a relatively small number of active aloms(- ID15)-... [Pg.472]

Figure 8.8. Adsorbed states of isoprene (2-methyl-1,3-butadiene) as alternative 71 0 structures and their half-hydrogenated states, leading to the three isomeric 2-methyl butenes. - ... Figure 8.8. Adsorbed states of isoprene (2-methyl-1,3-butadiene) as alternative 71 0 structures and their half-hydrogenated states, leading to the three isomeric 2-methyl butenes. - ...
Poly(butenes), hydrogenated 68937-10-0 Butene, homopolymer, hydrogenated 1-Butene, polymer with 2-butene and 2-methyl-1 -propene, epoxidized t Unk... [Pg.2283]

BUTENE. As shown in Figure 38, a group attached to C-1 can migrate from position 1 to 3 (1,3 shift) to produce an isomer. If it is a methyl group, we recover a 1-butene. If it is a hydrogen atom, 2-butene is obtained. A third possible product is the cyclopropane derivative. The photochemical rearrangement of 1-butene was studied extensively both experimentally [88]... [Pg.372]

The carbopalladation is extended to homoallylic amines and sulfides[466. Treatment of 4-dimethylamino-l-butene (518) with diethyl malonate and Li2PdCl4 in THF at room temperature leads to the oily carbopalladated complex 519, hydrogenation of which affords diethyl 4-(dimethylamino) butylmalonate (520) in an overall yield of 91%. Similarly, isopropyl 3-butenyl sulfide (521) is carbopalladated with methyl cyclopentanonecarboxylate and Li2PdCl4. Reduction of the complex affords the alkylated keto ester 522 in 96% yield. Thus functionalization of alkenes is possible by this method. [Pg.96]

Our belief that carbocations are intermediates m the addition of hydrogen halides to alkenes is strengthened by the fact that rearrangements sometimes occur For example the reaction of hydrogen chloride with 3 methyl 1 butene is expected to produce 2 chloro 3 methylbutane Instead a mixture of 2 chloro 3 methylbutane and 2 chloro 2 methylbutane results... [Pg.241]

An early attempt to hydroformylate butenediol using a cobalt carbonyl catalyst gave tetrahydro-2-furanmethanol (95), presumably by aHybc rearrangement to 3-butene-l,2-diol before hydroformylation. Later, hydroformylation of butenediol diacetate with a rhodium complex as catalyst gave the acetate of 3-formyl-3-buten-l-ol (96). Hydrogenation in such a system gave 2-methyl-1,4-butanediol (97). [Pg.107]

Hydrogenation of methylbutynol gives 2-methyl-3-buten-2-ol and then 2-methylbutan-2-ol in stepwise fashion (192). [Pg.113]

Bromination of isoprene using Br2 at —5 ° C in chloroform yields only /n j -l,4-dibromo-2-methyl-2-butene (59). Dry hydrogen chloride reacts with one-third excess of isoprene at —15 ° C to form the 1,2-addition product, 2-chloro-2-methyl-3-butene (60). When an equimolar amount of HCl is used, the principal product is the 1,4-addition product, l-chloro-3-methyl-2-butene (61). The mechanism of addition is essentially all 1,2 with a subsequent isomerization step which is catalyzed by HCl and is responsible for the formation of the 1,4-product (60). The 3,4-product, 3-bromo-2-methyl-1-butene, is obtained by the reaction of isoprene with 50% HBr in the presence of cuprous bromide (59). Isoprene reacts with the reactive halogen of 3-chlorocyclopentene (62). [Pg.465]

MEK is a colorless, stable, flammable Hquid possessing the characteristic acetone-type odor of low molecular weight aUphatic ketones. MEK undergoes typical reactions of carbonyl groups with activated hydrogen atoms on adjacent carbon atoms, and condenses with a variety of reagents. Condensation of MEK with formaldehyde produces methylisopropenyl ketone (3-methyl-3-buten-2-one) ... [Pg.488]

Methyl Isopropyl Ketone. Methyl isopropyl ketone [563-80-4] (3-methyl-2-butanone) is a colorless Hquid with a characteristic odor of lower ketones. It can be produced by hydrating isoprene over an acidic catalyst at 200—300°C (150,151) or by acid-catalyzed condensation of methyl ethyl ketone and formaldehyde to 2-methyl-l-buten-3-one, foUowed by hydrogenation to the product (152). Other patented preparations are known (155,156). Methyl isopropyl ketone is used as an intermediate in the production of pharmaceuticals and fragrances (see Perfumes), and as a solvent (157). It is domestically available from Eastman (Longview, Texas) (47). [Pg.493]

Toluene reacts with carbon monoxide and butene-1 under pressure in the presence of hydrogen fluoride and boron trifluoride to give 4-methyl-j iYbutyrophenone which is reduced to the carbinol and dehydrated to the olefin. The latter is cycHzed and dehydrogenated over a special alumina-supported catalyst to give pure 2,6- dim ethyl n aph th a1 en e, free from isomers. It is also possible to isomerize various dim ethyl n aph th a1 en es to the... [Pg.293]

In the petroleum (qv) industry hydrogen bromide can serve as an alkylation catalyst. It is claimed as a catalyst in the controlled oxidation of aHphatic and ahcycHc hydrocarbons to ketones, acids, and peroxides (7,8). AppHcations of HBr with NH Br (9) or with H2S and HCl (10) as promoters for the dehydrogenation of butene to butadiene have been described, and either HBr or HCl can be used in the vapor-phase ortho methylation of phenol with methanol over alumina (11). Various patents dealing with catalytic activity of HCl also cover the use of HBr. An important reaction of HBr in organic syntheses is the replacement of aHphatic chlorine by bromine in the presence of an aluminum catalyst (12). Small quantities of hydrobromic acid are employed in analytical chemistry. [Pg.291]

Among the cases in which this type of kinetics have been observed are the addition of hydrogen chloride to 2-methyl-1-butene, 2-methyl-2-butene, 1-mefliylcyclopentene, and cyclohexene. The addition of hydrogen bromide to cyclopentene also follows a third-order rate expression. The transition state associated with the third-order rate expression involves proton transfer to the alkene from one hydrogen halide molecule and capture of the halide ion from the second ... [Pg.354]

The lack of rotation around carbon-carbon double bonds is of more than just theoretical interest it also has chemical consequences. Imagine the situation for a disubstifitted alkene such as 2-butene. Disubstitilted means that two substituents other than hydrogen are bonded to the double-bond carbons.) The two methyl groups in 2-bulene can be either on the same side of the double bond or on opposite sides, a situation similar to that in disubstitutecl cycloalkanes (Section 4.2). [Pg.179]


See other pages where Hydrogenation 3-methyl-2-buten is mentioned: [Pg.90]    [Pg.533]    [Pg.337]    [Pg.689]    [Pg.195]    [Pg.336]    [Pg.120]    [Pg.231]    [Pg.237]    [Pg.237]    [Pg.245]    [Pg.289]    [Pg.45]    [Pg.374]    [Pg.29]    [Pg.231]    [Pg.237]    [Pg.237]    [Pg.245]    [Pg.252]    [Pg.252]    [Pg.200]    [Pg.263]    [Pg.1315]    [Pg.303]    [Pg.253]    [Pg.26]    [Pg.872]    [Pg.1124]    [Pg.46]   
See also in sourсe #XX -- [ Pg.105 , Pg.304 ]




SEARCH



2 Methyl 2 butene hydrogenation

2-Methyl-2-butenal

2-Methyl-2-butene

3-Methyl-2-buten

Hydrogenation butenes

Methyl hydrogenation

© 2024 chempedia.info