Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenate steam cracked

Residues (petroleum), coker scrubber, condensed-ring-arom-containing Residues (petroleum), hydrogenated steam-cracked naphtha, atm tower, vacuum, light... [Pg.94]

A high purity hydrogen and a low purity methane stream result. The 95% hydrogen may be used directly to hydrogenate steam cracked naphtha or directly consumed elsewhere in the refinery. The methane stream goes to fuel. [Pg.104]

Residues (petroleum), hydrogenated steam-cracked naphtha... [Pg.123]

In order to increase the solubiUty parameter of CPD-based resins, vinyl aromatic compounds, as well as other polar monomers, have been copolymerized with CPD. Indene and styrene are two common aromatic streams used to modify cyclodiene-based resins. They may be used as pure monomers or contained in aromatic steam cracked petroleum fractions. Addition of indene at the expense of DCPD in a thermal polymerization has been found to lower the yield and softening point of the resin (55). CompatibiUty of a resin with ethylene—vinyl acetate (EVA) copolymers, which are used in hot melt adhesive appHcations, may be improved by the copolymerization of aromatic monomers with CPD. As with other thermally polymerized CPD-based resins, aromatic modified thermal resins may be hydrogenated. [Pg.355]

Depending upon the refinery needs, the raw C5 plus steam cracked naphtha may be sent to isoprene extraction, treated to remove gum forming diolefins and sent to the refinery gasoline pool, or else completely hydrogenated and then fed to an aromatics extraction unit. [Pg.103]

A major use of propane recovered from natural gas is the production of light olefins by steam cracking processes. However, more chemicals can be obtained directly from propane by reaction with other reagents than from ethane. This may be attributed to the relatively higher reactivity of propane than ethane due to presence of two secondary hydrogens, which are easily substituted. [Pg.171]

Most refiners employ continuous water wash as the principal mei of controlling corrosion and hydrogen blistering. The best sourc water is either steam condensate or well-stripped water from a water stripper. A number of refiners use ammonium polysulfat neutralize hydrogen cyanide and to control hydrogen stress crack... [Pg.31]

Selective hydrogenation of diolefins and alkenylaromatics in steam-cracked gasoline is of industrial importance. Specific refining by selective hydrogenation of these polymerizable hydrocarbons without hydrogenating other unsaturated compounds (alkenes, aromatics) is required to increase the stability of gasoline (see Section 11.6.1). [Pg.627]

Alkenes or olefins (ethylene, propylene, butenes, and butadiene) are mainly produced via thermal steam cracking. Here, a petroleum fraction is mixed with water and heated briefly (for about 1 second) at 800 to 900C (1,472— 1,652°F), which breaks C-C bonds to yield shorter chains and splits out adjacent hydrogen atoms to form double bonds. The distribution of products obtained is given in Table 1. [Pg.223]

Both of these reactions have very important industrial uses (Section 14.3.9). In order to obtain alkene streams of sufficient purity for further use, the products of steam-cracking or catalytic cracking of naphtha fractions must be treated to lower the concentration of alkynes and alkadienes to very low levels (<5ppm). For example, residual alkynes and dienes can reduce the effectiveness of alkene polymerisation catalysts, but the desired levels of impurities can be achieved by their selective hydrogenation (Scheme 9.4) with palladium catalysts, typically Pd/A Os with a low palladium content. A great deal of literature exists,13,37 particularly on the problem of hydrogenating ethyne in the presence of a large excess of... [Pg.252]

The primary source of isoprene today is as a by-product in the production of ethylene via naphtha cracking. A solvent extraction process is employed. Much less isoprene is produced in the crackers than butadiene, so the availability of isoprene is much more limited. Isoprene also may be produced by the catalytic dehydrogenation of amylenes, which are available in C-5 refinery streams. It also can be produced from propylene by a dimerization process, followed by isomerization and steam cracking. A third route involves the use of acetone and acetylene, produced from coal via calcium carbide. The resulting 3-methyl-butyne-3-ol is hydrogenated to methyl butanol and subsequently dehydrogenated to give isoprene. The plants that were built on these last two processes have been shut down, evidently because of the relatively low cost of the extraction route. [Pg.698]

Should MTBE be banned, what would be the logical replacement(s) There are several options available. Several refiners opted to build MTBE capacity and avoid purchasing the ether on the open market. MTBE units were an option to use the facility s isobutylenes. Several licensed processes can be used to convert existing MTBE units. Kvaerner and Lyondell Chemical Co. offer technologies to convert an MTBE unit to produce iso-octane, as shown in Fig. 18.27.12 Snamprogetti SpA and CDTECH also have an iso-octene/iso-octane process. These processes can use various feedstocks such as pure iso-butane, steam-cracked C4 raffinate, 50/50 iso-butane/iso-butene feeds, and FCC butane-butane streams. The process selectively dimerizes C4 olefins to iso-octene and then hydrogenates the iso-octene (di-iso-butene) into iso-octane. The processes were developed to provide an alternative to MTBE. The dimerization reactor uses a catalyst similar to that for MTBE processes thus, the MTBE reactor can easily be converted to... [Pg.838]


See other pages where Hydrogenate steam cracked is mentioned: [Pg.391]    [Pg.524]    [Pg.42]    [Pg.347]    [Pg.280]    [Pg.628]    [Pg.89]    [Pg.31]    [Pg.91]    [Pg.211]    [Pg.225]    [Pg.218]    [Pg.118]    [Pg.17]    [Pg.112]    [Pg.111]    [Pg.112]    [Pg.36]    [Pg.46]    [Pg.664]    [Pg.665]    [Pg.42]    [Pg.347]    [Pg.1426]    [Pg.283]    [Pg.534]    [Pg.540]    [Pg.120]    [Pg.206]    [Pg.277]    [Pg.73]    [Pg.24]    [Pg.303]    [Pg.319]    [Pg.50]    [Pg.20]    [Pg.20]   


SEARCH



Hydrogenate steam cracked naphtha

Steam cracking

Steam hydrogen

© 2024 chempedia.info