Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen peroxide transfer

Ti carries out epoxidation with hydrogen peroxide transferring the proximal oxygen atom, like the early transition metals. However, in the case of Ti, the transfer is promoted by protic substances such as alcohols or water, making the use of dilute hydrogen peroxide possible. [Pg.1]

Addition of dilute potassium dichromate(VI) solution, K2Cr207, to a solution of hydrogen peroxide produces chromium peroxide, CrOj, as an unstable blue coloration on adding a little ether and shaking this compound transfers to the organic layer in which it is rather more stable. [Pg.281]

The alkene is allowed to react at low temperatures with a mixture of aqueous hydrogen peroxide, base, and a co-solvent to give a low conversion of the alkene (29). These conditions permit reaction of the water-insoluble alkene and minimise the subsequent ionic reactions of the epoxide product. Phase-transfer techniques have been employed (30). A variation of this scheme using a peroxycarbimic acid has been reported (31). [Pg.304]

The mechanism of this reaction involves an activation of the ammonia and hydrogen peroxide because these compounds do not themselves react (118—121). It appears that acetamide functions as an oxygen transfer agent, possibly as the iminoperacetic acid (41) which then oxidizes the transient Schiff base formed between MEK and ammonia (40) to give the oxaziridine (42), with regeneration of acetamide ... [Pg.284]

This type of amination by an oxaziridine is assumed to be the key step of a novel process for hydrazine manufacture, in the course of which butanone in solution with ammonia is reacted with hydrogen peroxide and acetonitrile. The smooth formation of oxaziridines from Schiff bases and hydrogen peroxide-nitrile mixtures is as well known as NH transfer from an oxaziridine like (300), suggesting the intermediacy of (300) as the N—N forming agent (72TL633). [Pg.235]

D-homosteroids, 382 Hydrazoic acid, 27, 145 Hydriodic acid, 172 Hydroboration, 165, 166 Hydrogen peroxide, 221 Hydrogen transfer, 239 17 i3-Hydroxy-2-acety l-5a-androstan-3 -one acetate, 342... [Pg.459]

Better results are obtained by transferring 25.0 mL of the diluted hydrogen peroxide solution to a conical flask, and adding 100 mL 1M(1 20) sulphuric acid. Pass a slow stream of carbon dioxide or nitrogen through the flask, add 10 mL of 10 per cent potassium iodide solution, followed by three drops of 3 per cent ammonium molybdate solution. Titrate the liberated iodine immediately with standard 0.1M sodium thiosulphate in the usual way. [Pg.395]

Dissolve a known weight (ca 0.5 g) of the steel by any suitable procedure. Treat the acidic sample solution (< 200 /jg Co), containing iron in the iron(II) state, with 10-15 mL of 40 per cent (w/v) sodium citrate solution, dilute to 50-75 mL and adjust the pH to 3-4 (indicator paper) with 2M hydrochloric acid or sodium hydroxide. Cool to room temperature, add 10 mL of 3 per cent (10-volume) hydrogen peroxide and, after 3 minutes, 2mL of the reagent solution. Allow to stand for at least 30 minutes at room temperature. Extract the solution in a separatory funnel by shaking vigorously for 1 minute with 25 mL of chloroform repeat the extraction twice with 10 mL portions of chloroform. Dilute the combined extracts to 50 mL with chloroform and transfer to a clean separatory funnel. Add 20 mL of 2M hydrochloric acid, shake for 1 minute, run the chloroform layer into another separatory funnel, and shake for 1 minute with 20 mL of 2M sodium hydroxide. Determine the absorbance of the clear chloroform phase in a 1 cm cell at 530 nm. [Pg.689]

Epoxidation systems based on molybdenum and tungsten catalysts have been extensively studied for more than 40 years. The typical catalysts - MoVI-oxo or WVI-oxo species - do, however, behave rather differently, depending on whether anionic or neutral complexes are employed. Whereas the anionic catalysts, especially the use of tungstates under phase-transfer conditions, are able to activate aqueous hydrogen peroxide efficiently for the formation of epoxides, neutral molybdenum or tungsten complexes do react with hydrogen peroxide, but better selectivities are often achieved with organic hydroperoxides (e.g., TBHP) as terminal oxidants [44, 45],... [Pg.195]

If a dilute solution of hydrogen peroxide in dry acetonitrile is added to a solution of a sulphoxide and an iron(II) salt in dry acetonitrile then the sulphone is produced in quantitative yield34. This latter reaction works equally well for aliphatic and aromatic sulphoxides and is thought to involve oxygen transfer by the reaction of a ferryl ion with the sulphoxide, as shown in equation (12). [Pg.973]

The scope of reactions involving hydrogen peroxide and PTC is large, and some idea of the versatility can be found from Table 4.2. A relatively new combined oxidation/phase transfer catalyst for alkene epoxidation is based on MeRe03 in conjunction with 4-substituted pyridines (e.g. 4-methoxy pyridine), the resulting complex accomplishing both catalytic roles. [Pg.123]

Table 4.2 Examples of phase transfer catalysed hydrogen peroxide reactions... Table 4.2 Examples of phase transfer catalysed hydrogen peroxide reactions...

See other pages where Hydrogen peroxide transfer is mentioned: [Pg.214]    [Pg.1129]    [Pg.214]    [Pg.1129]    [Pg.798]    [Pg.955]    [Pg.54]    [Pg.281]    [Pg.476]    [Pg.441]    [Pg.269]    [Pg.385]    [Pg.294]    [Pg.524]    [Pg.163]    [Pg.186]    [Pg.186]    [Pg.271]    [Pg.437]    [Pg.36]    [Pg.211]    [Pg.120]    [Pg.796]    [Pg.1050]    [Pg.395]    [Pg.678]    [Pg.197]    [Pg.210]    [Pg.1289]    [Pg.538]    [Pg.592]    [Pg.595]    [Pg.615]    [Pg.72]    [Pg.894]    [Pg.54]    [Pg.210]    [Pg.248]    [Pg.285]    [Pg.122]   


SEARCH



Hydrogen peroxide oxygen atom transfer

© 2024 chempedia.info