Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen peroxide peroxidation chain

This proposal, however, has been criticized on the basis of transition state theory (74). Hydroperoxy radicals produced in reaction 23 or 24 readily participate in chain-terminating reactions (eq. 17) and are only weak hydrogen abstractors. When they succeed in abstracting hydrogen, they generate hydrogen peroxide ... [Pg.339]

Hydroxyl tion. Commercial lecithin can be hydroxylated at the unsaturated fatty acid chains by treatment with concentrated hydrogen peroxide and acids like lactic or acetic acid. [Pg.99]

Other apphcations of sodium bromide iaclude use ia the photographic iadustry both to make light-sensitive silver bromide [7785-23-1] emulsions and to lower the solubiUty of silver bromides during the developing process use as a wood (qv) preservative in conjunction with hydrogen peroxide (14) as a cocatalyst along with cobalt acetate [917-69-1] for the partial oxidation of alkyl side chains on polystyrene polymers (15) and as a sedative, hypnotic, and anticonvulsant. The FDA has, however, indicated that sodium bromide is ineffective as an over-the-counter sleeping aid for which it has been utilized (16). [Pg.189]

Oxidation. Disulfides are prepared commercially by two types of reactions. The first is an oxidation reaction uti1i2ing the thiol and a suitable oxidant as in equation 18 for 2,2,5,5-tetramethyl-3,4-dithiahexane. The most common oxidants are chlorine, oxygen (29), elemental sulfur, or hydrogen peroxide. Carbon tetrachloride (30) has also been used. This type of reaction is extremely exothermic. Some thiols, notably tertiary thiols and long-chain thiols, are resistant to oxidation, primarily because of steric hindrance or poor solubiUty of the oxidant in the thiol. This type of process is used in the preparation of symmetric disulfides, RSSR. The second type of reaction is the reaction of a sulfenyl haUde with a thiol (eq. 19). This process is used to prepare unsymmetric disulfides, RSSR such as 4,4-dimethyl-2,3-dithiahexane. Other methods may be found in the Hterature (28). [Pg.12]

Titanium Silicates. A number of titanium siUcate minerals are known (160) examples are Hsted in Table 19. In most cases, it is convenient to classify these on the basis of the connectivity of the SiO building blocks, eg, isolated tetrahedra, chains, and rings, that are typical of siUcates in general. In some cases, the SiO units may be replaced, even if only to a limited extent by TiO. For example, up to 6% of the SiO in the garnet schorlomite can be replaced by TiO. In general, replacement of SiO by TiO bull ding blocks increases the refractive indices of these minerals. Ti has also replaced Si in the framework of various zeofltes. In addition, the catalytic activity of both titanium-substituted ZSM-5 (TS-1) and ZSM-11 (TS-2) has received attention (161), eg, the selective oxidation of phenol, with hydrogen peroxide, to hydroquinone and catechol over TS-1 has been operated at the 10,000 t/yr scale in Italy (162). [Pg.132]

The NOBS system undergoes an additional reaction that forms a diacyl peroxide as a result of the nucleophilic attack of the peracid anion on the NOBS precursor as shown in equation 21. This undesirable side reaction can be minimized by the use of an excess molar quantity of hydrogen peroxide (91,96) or by the use of shorter dialkyl chain acid derivatives. However, the use of these acid derivatives also appears to result in less efficient bleaching. The dependence of the acid group on the side product formation is apparentiy the result of the proximity of the newly formed peracid to unreacted NOBS in the micellar environment (91). A variety of other peracid precursor stmctures can be found (97—118). [Pg.147]

Pyridazine aldehydes and ketones with the carbonyl group at the ring or in a side chain react in the usual manner. They form hydrazones, semicarbazides, oximes, etc. Side-chain aldehydes can be easily oxidized to pyridazinecarboxylic acids with silver nitrate and side-chain ketones are oxidized to carboxylic acids by treatment with potassium permanganate or hydrogen peroxide. [Pg.32]

Many functional groups are stable to alkaline hydrogen peroxide. Acetate esters are usually hydrolyzed under the reaction conditions although methods have been developed to prevent hydrolysis.For the preparation of the 4,5-oxiranes of desoxycorticosterone, hydrocortisone, and cortisone, the alkali-sensitive ketol side chains must be protected with a base-resistant group, e.g., the tetrahydropyranyl ether or the ethylene ketal derivative. Sodium carbonate has been used successfully as a base with unprotected ketol side chains, but it should be noted that some ketols are sensitive to sodium carbonate in the absence of hydrogen peroxide. The spiroketal side chain of the sapogenins is stable to the basic reaction conditions. [Pg.14]

Similar hydroxylation-oxidations can be carried out using a catalytic amount of osmium tetroxide with A-methylmorpholine oxide-hydrogen peroxide or phenyliodosoacetate." A recent patent describes the use of triethylamine oxide peroxide and osmium tetroxide for the same sequence. Since these reactions are of great importance for the preparation of the di-hydroxyacetone side-chain of corticoids, they will be discussed in a later section. [Pg.184]

The most commonly employed reagent for the hydroxylation of aromatic compounds is that consisting of ferrous ion and hydrogen peroxide. The suggestion that hydroxyl radicals are intermediates in this reaction was first made by Haber and Weiss, who proposed the following radical-chain mechanism for the process ... [Pg.164]

In the presence of radical initiators such as benzoyl peroxide (BPO), azobisisobutyronitrile (AIBN), persulfates (S208 ), etc., grafting of vinyl monomers onto polymeric backbones involves generation of free radical sites by hydrogen abstraction and chain transfer processes as described below ... [Pg.483]

The presence of sulphonic and carboxylic groups enables the iron ions to be in the vicinity of the cellulose backbone chain. In this case, the radicals formed can easily attack the cellulose chain leading to the formation of a cellulose macroradical. Grafting of methyl methacrylate on tertiary aminized cotton using the bi-sulphite-hydrogen peroxide redox system was also investigated [58]. [Pg.506]

The mechanism of inhibition by the salts of the long chain fatty acids has been examined . It was concluded that, in the case of the lead salts, metallic lead was first deposited at certain points and that at these points oxygen reduction proceeded more easily, consequently the current density was kept sufficiently high to maintain ferric film formation in addition, any hydrogen peroxide present may assist in keeping the iron ions in the oxide film in the ferric condition, consequently the air-formed film is thickened until it becomes impervious to iron ions. The zinc, calcium and sodium salts are not as efficient inhibitors as the lead salts and recent work has indicated that inhibition is due to the formation of ferric azelate, which repairs weak spots in the air-formed film. This conclusion has been confirmed by the use of C labelled azelaic acid, which was found to be distributed over the surface of the mild steel in a very heterogeneous manner. ... [Pg.596]

Although the biosynthetic cascade hypothesis predicts the co-occurrence of endiandric acids D (4) and A (1) in nature, the former compound was not isolated until after its total synthesis was completed in the laboratory (see Scheme 6). Our journey to endiandric acid D (4) commences with the desilylation of key intermediate 22 to give alcohol 31 in 95% yield. The endo side chain is then converted to a methyl ester by hydrolysis of the nitrile to the corresponding acid with basic hydrogen peroxide, followed by esterification with diazomethane to afford intermediate 32 in 92% overall yield. The exo side chain is then constructed by sequential bromination, cyanide displacement, ester hydrolysis (33), reduction, and olefination (4) in a straight-... [Pg.272]

A particularly interesting system for the epoxidation of propylene to propylene oxide, working under pseudo-heterogeneous conditions, was reported by Zuwei and coworkers [61]. The catalyst, which was based on the Venturello anion combined with long-chained alkylpyridinium cations, showed unique solubility properties. I11 the presence of hydrogen peroxide the catalyst was fully soluble in the solvent, a 4 3 mixture of toluene and tributyl phosphate, but when no more oxidant was left, the tungsten catalyst precipitated and could simply be removed from the... [Pg.200]

Radical-mediated silyldesulfonylation of various vinyl and (a-fluoro)vinyl sulfones 21 with (TMSlsSiH (Reaction 25) provide access to vinyl and (a-fluoro)vinyl silanes 22. These reactions presumably occur via a radical addition of (TMSlsSi radical followed by /)-scission with the ejection of PhS02 radical. Hydrogen abstraction from (TMSlsSiH by PhS02 radical completes the cycle of these chain reactions. Such silyldesulfonylation provides a flexible alternative to the hydrosilylation of alkynes with (TMSlsSiH (see below). On oxidative treatment with hydrogen peroxide in basic aqueous solution, compound 22 undergoes Pd-catalyzed cross-couplings with aryl halides. [Pg.131]

These include the mitochondrial respiratory chain, key enzymes in fatty acid and amino acid oxidation, and the citric acid cycle. Reoxidation of the reduced flavin in oxygenases and mixed-function oxidases proceeds by way of formation of the flavin radical and flavin hydroperoxide, with the intermediate generation of superoxide and perhydroxyl radicals and hydrogen peroxide. Because of this, flavin oxidases make a significant contribution to the total oxidant stress of the body. [Pg.490]


See other pages where Hydrogen peroxide peroxidation chain is mentioned: [Pg.27]    [Pg.278]    [Pg.44]    [Pg.336]    [Pg.341]    [Pg.471]    [Pg.481]    [Pg.111]    [Pg.114]    [Pg.119]    [Pg.366]    [Pg.479]    [Pg.5]    [Pg.524]    [Pg.69]    [Pg.271]    [Pg.399]    [Pg.312]    [Pg.241]    [Pg.221]    [Pg.796]    [Pg.981]    [Pg.33]    [Pg.190]    [Pg.34]    [Pg.195]    [Pg.254]    [Pg.196]    [Pg.94]    [Pg.162]    [Pg.1289]    [Pg.255]    [Pg.84]    [Pg.121]   
See also in sourсe #XX -- [ Pg.7 , Pg.8 , Pg.9 ]




SEARCH



Hydrogen chains

Hydrogen peroxide decomposition chain terminating reactions

Hydrogen peroxide, chain decomposition

Peroxidation chain

© 2024 chempedia.info