Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen peroxide iron catalysts

Heavy metal testing allows us to detect substances with a low redox potential. If the test compound is sensitive to a number of different oxidants or catalysts, such as hydrogen peroxide, iron (III), and copper (II), it is advisable to consider the substance as potentially very sensitive to oxidation. In this case, it is wise to consider a preformulation involving the use of antioxidants or special protecting conditions. [Pg.229]

Aqueous Fe2+ and many of its coordination complexes serve as excellent catalysts for the formation of hydroxyl radical from hydrogen peroxide. Iron oxyhydroxides have also been found to catalyze the formation of hydroxyl radical [45], although at a much slower rate than dissolved iron. Consequently, a number of researchers have investigated the potential for using soil minerals as catalyst to avoid the need for the addition of soluble iron to the system. [Pg.187]

The mechanism and rate of hydrogen peroxide decomposition depend on many factors, including temperature, pH, presence or absence of a catalyst (7—10), such as metal ions, oxides, and hydroxides etc. Some common metal ions that actively support homogeneous catalysis of the decomposition include ferrous, ferric, cuprous, cupric, chromate, dichromate, molybdate, tungstate, and vanadate. For combinations, such as iron and... [Pg.471]

The synthesis of 2,4-dihydroxyacetophenone [89-84-9] (21) by acylation reactions of resorcinol has been extensively studied. The reaction is performed using acetic anhydride (104), acetyl chloride (105), or acetic acid (106). The esterification of resorcinol by acetic anhydride followed by the isomerization of the diacetate intermediate has also been described in the presence of zinc chloride (107). Alkylation of resorcinol can be carried out using ethers (108), olefins (109), or alcohols (110). The catalysts which are generally used include sulfuric acid, phosphoric and polyphosphoric acids, acidic resins, or aluminum and iron derivatives. 2-Chlororesorcinol [6201-65-1] (22) is obtained by a sulfonation—chloration—desulfonation technique (111). 1,2,4-Trihydroxybenzene [533-73-3] (23) is obtained by hydroxylation of resorcinol using hydrogen peroxide (112) or peracids (113). [Pg.491]

Wet-Chemical Determinations. Both water-soluble and prepared insoluble samples must be treated to ensure that all the chromium is present as Cr(VI). For water-soluble Cr(III) compounds, the oxidation is easily accompHshed using dilute sodium hydroxide, dilute hydrogen peroxide, and heat. Any excess peroxide can be destroyed by adding a catalyst and boiling the alkaline solution for a short time (101). Appropriate ahquot portions of the samples are acidified and chromium is found by titration either using a standard ferrous solution or a standard thiosulfate solution after addition of potassium iodide to generate an iodine equivalent. The ferrous endpoint is found either potentiometricaHy or by visual indicators, such as ferroin, a complex of iron(II) and o-phenanthroline, and the thiosulfate endpoint is ascertained using starch as an indicator. [Pg.141]

The uv—hydrogen peroxide system has advantages over the iron—hydrogen peroxide (Fenton s reagent) procedures, eg, the reaction is not limited to an acid pH range and the iron catalyst and resulting sludges are eliminated. However, the system to date is not effective for dye wastewaters because of absorption of uv by colored effluent. [Pg.383]

Hydrogen cyanide reactions catalysts, 6,296 Hydrogen ligands, 2, 689-711 Hydrogenolysis platinum hydride complexes synthesis, 5, 359 Hydrogen peroxide catalytic oxidation, 6, 332, 334 hydrocarbon oxidation iron catalysts, 6, 379 reduction... [Pg.141]

Hydrogen peroxide breaks down into water and oxygen. A liter of 3 percent hydrogen peroxide will generate 10 liters of oxygen when a catalyst is used to facilitate the breakdown. Catalysts can be metals such as iron, copper, or silver, or organics such as the blood enzyme... [Pg.168]

The 3 percent hydrogen peroxide you get at the drugstore is often protected from decomposing by the addition of sodium silicate, magnesium sulfate, or tin compounds. These stabilizers lock up the iron, copper, and other transition metals that can act as catalysts. [Pg.169]

In this work, catalysts containing iron supported on activated carbon were prepared and investigated for their catalytic performance in the direct production of phenol fiom benzene with hydrogen peroxide and the effect of Sn addition to iron loaded on activated carbon catalyst were also studied. [Pg.278]

Catalysts were prepared with 0.5, 1.0, 2.0 and 5.0 wt% of iron loaded on activated carbon. Benzene hydroxylation with hydrogen peroxide as oxidant was carried out. The conversion of benzene, selectivity and yield of phenol for these catalysts are shown in Fig. 4. As the weight of loaded metal increased the benzene conversion increased by about 33% but the selectivity to phenol decreased. The yield of phenol that was obtained with S.OFe/AC was about 16%. [Pg.279]

The preparation of iron impregnated activated carbon as catalysts and the catalytic performance of these catalysts were studied in benzene hydroxylation with hydrogen peroxide as oxidant. 5.0Fe/AC catalyst containing 5.0 wt% iron on activated carbon yielded about 16% phenol. The addition of Sn on 5.0Fe/AC catalyst led to the enhancement of selectivity towards phenol. [Pg.280]

In addition, also nonheme iron catalysts containing BPMEN 1 and TPA 2 as ligands are known to activate hydrogen peroxide for the epoxidation of olefins (Scheme 1) [20-26]. More recently, especially Que and coworkers were able to improve the catalyst productivity to nearly quantitative conversion of the alkene by using an acetonitrile/acetic acid solution [27-29]. The carboxylic acid is required to increase the efficiency of the reaction and the epoxide/diol product ratio. The competitive dihydroxylation reaction suggested the participation of different active species in these oxidations (Scheme 2). [Pg.85]

Under microwave irradiation and applying MCM-41-immobilized nano-iron oxide higher activity is observed [148]. In this case also, primary aliphatic alcohols could be oxidized. The TON for the selective oxidation of 1-octanol to 1-octanal reached to 46 with 99% selectivity. Hou and coworkers reported in 2006 an iron coordination polymer [Fe(fcz)2Cl2]-2CH30H with fez = l-(2,4-difluorophenyl)-l,l-bis[(l//-l,2,4-triazol-l-yl)methyl]ethanol which catalyzed the oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide as oxidant in 87% yield and up to 100% selectivity [149]. An alternative approach is based on the use of heteropoly acids, whereby the incorporation of vanadium and iron into a molybdo-phosphoric acid catalyst led to high yields for the oxidation of various alcohols (up to 94%) with molecular oxygen [150]. [Pg.104]

Until now examples for catalytic reactions involving ferrates with iron in the oxidation state of -l-3 are very rare. One example is the hexacyanoferrate 8-catalyzed oxidation of trimethoxybenzenes 7 to dimethoxy-p-benzoquinones 9/10 by means of hydrogen peroxide which was published by Matsumoto and Kobayashi in 1985 [2]. Using hexacyanoferrate 8 product 9 was favored while other catalysts like Fe(acac)3 or Fe2(S04)3 favored product 10 (Scheme 2). The oxidation is supposed to proceed via the corresponding phenols which are formed by the attack of OH radicals generated in the Fe/H202 system. [Pg.182]

It was found that the value of F, is markedly increased by ions which are effective catalysts of oxidation reactions of peroxydisulphate. These are silver(I) copper(n), and iron(III). Cobalt(II) and nickel(II) ions, although they are good catalysts for the decomposition of hydrogen peroxide, exert their effect merely as inert electrolytes in the induced reaction. Therefore it can be concluded that, in this process, activation of the rather less reactive 8203 is more important than that of hydrogen peroxide . ... [Pg.562]

In the presence of metal catalysts, hydrogen peroxide oxidations proceed in improved yields. The most common catalyst is an iron(II) salt which produces the well-known Fenton system or reagent. Dimethyl sulphoxide is oxidized to the sulphone using this system although a range of unwanted side-products such as methanol and methane are produced Diphenyl sulphoxide does not react using this reagent due to its insolubility and in all cases some iron(III) is formed by other side-reactions. [Pg.973]

Puppo, A. and Halliwell, B. (1988). Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton catalyst Biochem. J. 249, 185-190. [Pg.276]


See other pages where Hydrogen peroxide iron catalysts is mentioned: [Pg.206]    [Pg.251]    [Pg.187]    [Pg.5381]    [Pg.200]    [Pg.478]    [Pg.481]    [Pg.134]    [Pg.164]    [Pg.219]    [Pg.220]    [Pg.221]    [Pg.225]    [Pg.973]    [Pg.84]    [Pg.85]    [Pg.87]    [Pg.93]    [Pg.100]    [Pg.102]    [Pg.97]    [Pg.108]    [Pg.78]    [Pg.223]    [Pg.272]    [Pg.47]    [Pg.99]    [Pg.50]    [Pg.150]    [Pg.1024]    [Pg.1026]    [Pg.429]    [Pg.1636]   
See also in sourсe #XX -- [ Pg.379 ]

See also in sourсe #XX -- [ Pg.379 ]

See also in sourсe #XX -- [ Pg.6 , Pg.379 ]




SEARCH



Catalyst peroxide

Iron, catalyst

Peroxide-iron catalyst

© 2024 chempedia.info