Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen permittivity

The dipole moments of the hydrogen halides decrease with increasing atomic number of the hydrogen, the largest difference occurring between HF and HCl, and association of molecules is not an important factor in the properties of FICl, HBr and HI. This change in dipole moment is reflected in the diminishing permittivity (dielectric constant) values from HF to HI. [Pg.327]

Dielectric measurements were used to evaluate the degrees of inter- and intramolecular hydrogen bonding in novolac resins.39 The frequency dependence of complex permittivity (s ) within a relaxation region can be described with a Havriliak and Negami function (HN function) ... [Pg.388]

It has been pointed out321-324 that the two groups of solvents differ by some definite structural features. In particular, ED, 1,2-BD, and 1,3-BD possess vicinal OH groups that can form intramolecular hydrogen bonds. For these solvents, the ability of the organic molecule to interact with neighboring molecules is reduced. This results in the possibility of a different orientation at the interface because of different interactions of the OH groups with the Hg surface.323 The different molecular structure leads to different dipolar cooperative effects. As a result, the dependence of C on the bulk permittivity follows two different linear dependencies. [Pg.60]

Another factor influencing the reactivities of polar particles is their nonspecific solvation. Since both the individual particles, namely phenol and peroxyl radicals and their complex are polar, rate constants must depend on the polarity of the medium, its permittivity s, in particular. This was confirmed in experiments with mixtures of benzene and methylethyl-ketone, which showed that kq diminishes as the concentration of methylethylketone decreases provided the hydrogen bonding between the benzene and methylethylketone molecules are taken into account [10]. The dependence of ogkq on the medium permittivity s is described by the formula... [Pg.523]

Permittivity measurements have been used to study hydrogen bonding of phenol or carboxylic acids with trialkylphosphine oxides (154). The results can be explained in terms of a simple electrostatic model. The properties of trimethylphosphine oxide were different from the general properties of the series.189... [Pg.270]

The problem of influence of the electric field intensity on the permittivity of solvents has been discussed in many papers. The high permittivity of water results from the intermolecular forces and is a cumulative property. The electric field intensity is the lowest at the potential of zero charge (pzc), thus allowing water molecules to adsorb in clusters. When the electrode is polarized, the associated molecules, linked with hydrogen bonds, can dissociate due to a change in the energy of their interaction with the electrode. Moreover, the orientation of water molecules may also change when the potential is switched from one side of the pzc to the otha. [Pg.5]

The nonideality of electrolyte solntions, cansed nltimately by the electrical fields of the ions present, extends also to any nonelectrolyte that may be present in the aqueous solution. The nonelecttolyte may be a co-solvent that may be added to affect the properties of the solntion (e.g., lower the relative permittivity, e, or increase the solubility of other nonelecttolytes). For example, ethanol may be added to the aqueous solution to increase the solnbility of 8-hydroxyqni-noline in it. The nonelectrolyte considered may also be a reagent that does not dissociate into ions, or one where the dissociation is snppressed by the presence of hydrogen ions at a sufficient concentration (low pH cf Chapter 3), snch as the chelating agent 8-hydroxyquinoline. [Pg.67]

When the relative permittivity of the organic solvent or solvent mixture is e < 10, then ionic dissociation can generally be entirely neglected, and potential electrolytes behave as if they were nonelectrolytes. This is most clearly demonstrated experimentally by the negligible electrical conductivity of the solution, which is about as small as that of the pure organic solvent. The interactions between solute and solvent in such solutions have been discussed in section 2.3, and the concern here is with solute-solute interactions only. These take place mainly by dipole-dipole interactions, hydrogen bonding, or adduct formation. [Pg.70]

An atomic unit of length used in quantum mechanical calculations of electronic wavefunctions. It is symbolized by o and is equivalent to the Bohr radius, the radius of the smallest orbit of the least energetic electron in a Bohr hydrogen atom. The bohr is equal to where a is the fine-structure constant, n is the ratio of the circumference of a circle to its diameter, and is the Rydberg constant. The parameter a includes h, as well as the electron s rest mass and elementary charge, and the permittivity of a vacuum. One bohr equals 5.29177249 x 10 meter (or, about 0.529 angstroms). [Pg.95]

Liquid polyols are interesting among nonaqueous solvents because, like water and monoalcohols, they are hydrogen-bonded liquids with a high value of relative permittivity (Table 9.2.1), and therefore they are able to dissolve to some extent ionic inorganic compounds. Moreover, reactions can be carried out in such solvents under atmospheric pressure up to 250°C, i.e., at a temperature range higher than in water or monoalcohols such as methanol or ethanol. [Pg.461]

Some other classification schemes are provided in a work by Kolthoff (Kolthoff, 1974). It is according to the polarity and is described by the relative permittivity (dielectric constant) e, the dipole moment p (in 10 ° C.m), and the hydrogen-bond donation ability Another suggested classification (Parker, 1969) stresses the acidity and basicity (relative to water) of the solvents. A third one (Chastrette, 1979), stresses the hydrogen-bonding and electron-pair donation abilities, the polarity, and the extent of self-association. A fourth is a chemical constitution scheme (Riddick et al., 1986). The differences among these schemes are mainly semantic ones and are of no real consequence. Marcus presents these clearly (Marcus, 1998). [Pg.130]

In hydrogen-bonded ferroelectrics, the Curie temperature and permittivity alter when deuterium is substituted for hydrogen. What does this suggest about the origin of the ferroelectric transition in these compounds ... [Pg.393]

Hydrogen bonding in liquid water was discussed. The significance of the dipolar character of the water molecule was pointed out and its relation to the large value of the permittivity of the bulk... [Pg.11]

With increasing frequency, the permittivity of dielectric decreases. A major factor in the selection of insulation is the ability of the insulation to resist the absorption of moisture. Moisture, of course, can greatly lower resistivity. For wire insulation, synthetic polymers and plastics essentially have replaced the use ol natural rubber. Usually, prior to coaling a wire with a plastic material, (lie wire must he treated to assure good contact and adhesion of the insulating material. Copper wire, for example, is treated with hydrogen fluoride, which creates a coating ol clipper fluoride in the... [Pg.852]


See other pages where Hydrogen permittivity is mentioned: [Pg.53]    [Pg.270]    [Pg.329]    [Pg.416]    [Pg.905]    [Pg.30]    [Pg.42]    [Pg.53]    [Pg.270]    [Pg.329]    [Pg.1266]    [Pg.1294]    [Pg.39]    [Pg.68]    [Pg.76]    [Pg.132]    [Pg.182]    [Pg.206]    [Pg.270]    [Pg.240]    [Pg.13]    [Pg.20]    [Pg.24]    [Pg.181]    [Pg.55]    [Pg.12]    [Pg.59]    [Pg.596]    [Pg.624]    [Pg.222]    [Pg.117]    [Pg.172]   
See also in sourсe #XX -- [ Pg.187 ]

See also in sourсe #XX -- [ Pg.175 ]

See also in sourсe #XX -- [ Pg.207 ]




SEARCH



Hydrogen bonds complex permittivity

Hydrogen bonds permittivity

Hydrogen-bonded molecules complex permittivity

Permittance

Permittivities

Permittivity

© 2024 chempedia.info