Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen fluoride preparation

The anhydrous hydrogen fluoride prepared in this manner is of very high purity. Its properties have been... [Pg.135]

Bosso, C., Defaye, J., Domard, A., Gadelle, A., and Pederson, C. 1986. The behaviour of chitin toward anhydrous hydrogen fluoride preparation of (3-1-4-linked 2 acetamido-2-deoxy-D-gluco-pyranosyloligosaccharides. Carbohydr. Res. 156, 57. [Pg.129]

Bock and C. Pedersen, Reaction of tetra-O-acyl-l-deoxy-D-arabino-hex-l-enopyranose with hydrogen fluoride. Preparation of methyl-3,4-dideoxy-D-hexopyranosides, Acta Chem. Scand, 25 (1971) 1021-1030. [Pg.12]

C. Bosso, I. Defaye, A. Domard, A. Gadelle, and C. Pedersen, The behavior of chitin towards anhydrous hydrogen fluoride preparation of p-(l-4)-linked 2-acetamido-2-deoxy-D-glucopyra-nosyl oligosaccharides, Carbohydr. Res., 156 (1986) 57-68. [Pg.16]

Fluorine cannot be prepared directly by chemical methods. It is prepared in the laboratory and on an industrial scale by electrolysis. Two methods are employed (a) using fused potassium hydrogen-fluoride, KHFj, ill a cell heated electrically to 520-570 K or (b) using fused electrolyte, of composition KF HF = 1 2, in a cell at 340-370 K which can be electrically or steam heated. Moissan, who first isolated fluorine in 1886, used a method very similar to (b) and it is this process which is commonly used in the laboratory and on an industrial scale today. There have been many cell designs but the cell is usually made from steel, or a copper-nickel alloy ( Monel metal). Steel or copper cathodes and specially made amorphous carbon anodes (to minimise attack by fluorine) are used. Hydrogen is formed at the cathode and fluorine at the anode, and the hydrogen fluoride content of the fused electrolyte is maintained by passing in... [Pg.316]

Hydrogen fluoride is the most important compound of fluorine. It is prepared in the laboratory, and on the large scale, by the reaction of calcium fluoride with concentrated sulphuric acid. ... [Pg.329]

Another aspect of my early research in Budapest was in nitration chemistry, specifically the preparation of nitronium tetrafluoroborate, a stable nitronium salt. 1 was able to prepare the salt in a simple and efficient way from nitric acid, hydrogen fluoride, and boron trifluoride. [Pg.58]

The order of reactivity of the hydrogen halides parallels their acidity HI > HBr > HCl >> HF Hydrogen iodide is used infrequently however and the reaction of alco hols with hydrogen fluoride is not a useful method for the preparation of alkyl fluorides Among the various classes of alcohols tertiary alcohols are observed to be the most reactive and primary alcohols the least reactive... [Pg.152]

Barium fluoride [7782-32-8] Bap2, is a white crystal or powder. Under the microscope crystals may be clear and colorless. Reported melting points vary from 1290 (1) to 1355°C (2), including values of 1301 (3) and 1353°C (4). Differences may result from impurities, reaction with containers, or inaccurate temperature measurements. The heat of fusion is 28 kj/mol (6.8 kcal/mol) (5), the boiling point 2260°C (6), and the density 4.9 g/cm. The solubiUty in water is about 1.6 g/L at 25°C and 5.6 g/100 g (7) in anhydrous hydrogen fluoride. Several preparations for barium fluoride have been reported (8—10). [Pg.155]

Fep2 was first prepared by the action of gaseous hydrogen fluoride over FeCl2 ia an iron boat (2). The reaction of anhydrous FeCl2, FeCl2 4H20, or FeSO and anhydrous HF in plastic reaction vessels such as vessels of polyethylene, polypropylene, or Teflon results in quantitative yields of very... [Pg.202]

Anhydrous FeF is prepared by the action of Hquid or gaseous hydrogen fluoride on anhydrous FeCl (see Iron compounds). FeF is insoluble in alcohol, ether, and ben2ene, and sparingly soluble in anhydrous HF and water. The pH of a saturated solution in water varies between 3.5 and 4.0. Low pH indicates the presence of residual amounts of HF. The light gray color of the material is attributed to iron oxide or free iron impurities in the product. [Pg.202]

PbF2 is readily prepared by the action of hydrogen fluoride on lead hydroxide, lead carbonate, or a-lead oxide. It can also be obtained by precipitation from lead nitrate or lead acetate solutions using potassium fluoride, ammonium fluoride, or ammonium bifluoride. [Pg.204]

Preparation. Silver fluoride can be prepared by dissolving Ag20 or Ag2C02 iu anhydrous hydrogen fluoride or aqueous hydrofluoric acid, evaporating to dryness, and then treating with methanol or ether. [Pg.235]

Stannous fluoride probably was first prepared by Scheele in 1771 and was described by Gay-Lussac and Thenard in 1809. Commercial production of stannous fluoride is by the reaction of stannous oxide and aqueous hydrofluoric acid, or metallic tin and anhydrous hydrogen fluoride (5,6). Snp2 is also produced by the reaction of tin metal, HP, and a halogen in the presence of a nitrile (7). [Pg.253]

Titanium trifluoride is prepared by dissolving titanium metal in hydrofluoric acid (1,2) or by passing anhydrous hydrogen fluoride over titanium trihydrate at 700°C or over heated titanium powder (3). Reaction of titanium trichloride and anhydrous hydrogen fluoride at room temperature yields a cmde product that can be purified by sublimation under high vacuum at 930—950°C. [Pg.255]

Titanium(lV) fluoride dihydrate [60927-06-2] TiF 2H20, crystals can be prepared by the action of aqueous HF on titanium metal. The solution is carefully evaporated to obtain the crystals. Neutral solutions when heated slowly hydroly2e and form titanium(lV) oxyfluoride [13537-16-17, TiOF2 (6). Upon dissolution in hydrogen fluoride, TiF forms hexafluorotitanic acid [17439-11-17, ll]TiF. ... [Pg.255]

Hydrofluorocarbons are also prepared from acetylene or olefins and hydrogen fluoride (3), or from chlorocarbons and anhydrous hydrogen fluoride in the presence of various catalysts (3,15). A commercial synthesis of 1,1-difluoroethane, a CFG alternative and an intermediate to vinyl fluoride, is conducted in the vapor phase over an aluminum fluoride catalyst. [Pg.283]

Direct Fluorination. This is a more recently developed method for the synthesis of perfluorinated compounds. In this process, fluorine gas is passed through a solution or suspension of the reactant in a nonreactive solvent such as trichlorotrifluoroethane (CFC-113). Sodium fluoride may also be present in the reaction medium to remove the coproduct hydrogen fluoride. There has been enormous interest in this area since the early 1980s resulting in numerous journal pubHcations and patents (7—9) (see Fluorine compounds, organic-direct fluorination). Direct fluorination is especially useful for the preparation of perfluoroethers. [Pg.298]

Pubhcations have described the use of HFPO to prepare acyl fluorides (53), fluoroketones (54), fluorinated heterocycles (55), as well as serving as a source of difluorocarbene for the synthesis of numerous cycHc and acycHc compounds (56). The isomerization of HFPO to hexafluoroacetone by hydrogen fluoride has been used as part of a one-pot synthesis of bisphenol AF (57). HFPO has been used as the starting material for the preparation of optically active perfluorinated acids (58). The nmr spectmm of HFPO is given in Reference 59. The molecular stmcture of HFPO has been deterrnined by gas-phase electron diffraction (13). [Pg.304]

Sulfur Tetrafluoride and Aromatic Carboxylic Acids. Ben2otrifluorides also are prepared from aromatic carboxyhc acids and their derivatives with sulfur tetrafluoride (SF (106,107). Hydrogen fluoride is frequently used as a catalyst. Two equivalents of sulfur tetrafluoride are required ... [Pg.320]

Nitrosyl chloride (178), nitrosyl chloride—hydrogen fluoride (NOF -3HF, NOF -6HF) (179), nitrous acid—hydrogen fluoride solutions (180,181), or nitrogen trioxide (prepared in situ from nitric oxide and oxygen) (27) can be used in place of sodium nitrite in the dia2oti2ation step. [Pg.322]

Fluoronaphthalene [321-38-0] is prepared from 1-naphthylamine by the Balz-Schiemaim reaction in 52% yield or by diazotization in anhydrous hydrogen fluoride in 82% yield. Electrophilic substitution occurs at the 4-position, eg, nitration with fuming nitric acid in acetic acid gave 88% yield of l-fluoro-4-nitro-naphthalene [341 -92-4]. [Pg.328]


See other pages where Hydrogen fluoride preparation is mentioned: [Pg.134]    [Pg.380]    [Pg.38]    [Pg.134]    [Pg.380]    [Pg.38]    [Pg.179]    [Pg.210]    [Pg.278]    [Pg.2066]    [Pg.154]    [Pg.347]    [Pg.122]    [Pg.128]    [Pg.138]    [Pg.150]    [Pg.150]    [Pg.178]    [Pg.180]    [Pg.225]    [Pg.249]    [Pg.260]    [Pg.262]    [Pg.273]    [Pg.293]    [Pg.308]    [Pg.326]    [Pg.326]    [Pg.326]   
See also in sourсe #XX -- [ Pg.329 ]

See also in sourсe #XX -- [ Pg.329 ]

See also in sourсe #XX -- [ Pg.915 ]




SEARCH



Hydrogen preparation

© 2024 chempedia.info