Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen donors alcohols

The concept at the heart of this reaction is the conversion of a hydrogen donor (alcohol) into a hydrogen acceptor (alkene) to close the catalytic cycle (Scheme 13.15). [Pg.311]

Benzene and its homologs can be converted to the corresponding cyclo-hexadienes and cyclohexenes, and even cyclohexanes, by treatment with dissolving metals lithium, sodium, potassium or calcium in liquid ammonia or amines. Conversions are not complete, and the ratio of cyclohexadienes to cyclohexenes depends on the metal used, on the solvent, and on the presence of hydrogen donors (alcohols) added to the ammonia or amine [392, 393, 394]. [Pg.48]

The dimerization of ketones to 1,2-diols can also be accomplished photochemi-cally indeed, this is one of the most common photochemical reactions. The substrate, which is usually a diaryl or aryl alkyl ketone (though a few aromatic aldehydes and dialkyl ketones have been dimerized), is irradiated with UV light in the presence of a hydrogen donor such as isopropyl alcohol, toluene, or an amine. In the case of benzophenone, irradiated in the presence of 2-propanol, the ketone molecule initially undergoes n — k excitation, and the singlet species thus formed crosses to the T, state with a very high efficiency. [Pg.1560]

The catalytic alcohol racemization with diruthenium catalyst 1 is based on the reversible transfer hydrogenation mechanism. Meanwhile, the problem of ketone formation in the DKR of secondary alcohols with 1 was identified due to the liberation of molecular hydrogen. Then, we envisioned a novel asymmetric reductive acetylation of ketones to circumvent the problem of ketone formation (Scheme 6). A key factor of this process was the selection of hydrogen donors compatible with the DKR conditions. 2,6-Dimethyl-4-heptanol, which cannot be acylated by lipases, was chosen as a proper hydrogen donor. Asymmetric reductive acetylation of ketones was also possible under 1 atm hydrogen in ethyl acetate, which acted as acyl donor and solvent. Ethanol formation from ethyl acetate did not cause critical problem, and various ketones were successfully transformed into the corresponding chiral acetates (Table 17). However, reaction time (96 h) was unsatisfactory. [Pg.73]

Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51 1056-1062. [Pg.336]

Proton donors and acceptors from hydrogen bonds (alcohols, water, amines, orgartic acids, amides, etc.)... [Pg.84]

On the other hand, one of the first chiral sulfur-containing ligands employed in the asymmetric transfer hydrogenation of ketones was introduced by Noyori el al Thus, the use of A-tosyl-l,2-diphenylethylenediamine (TsDPEN) in combination with ruthenium for the reduction of various aromatic ketones in the presence of i-PrOH as the hydrogen donor, allowed the corresponding alcohols to be obtained in both excellent yields and enantioselectivities, as... [Pg.279]

As another successful application of Noyori s TsDPEN ligand, Yan et al. reported the synthesis of antidepressant duloxetine, in 2008. Thus, the key step of this synthesis was the asymmetric transfer hydrogenation of 3-(dime-thylamino)-l-(thiophen-2-yl)propan-l-one performed in the presence of (5,5)-TsDPEN Ru(II) complex and a HCO2H TEA mixture as the hydrogen donor. The reaction afforded the corresponding chiral alcohol in both high yield and enantioselectivity, which was further converted in two steps into expected (5)-duloxetine, as shown in Scheme 9.17. [Pg.281]

Finally, the use of S/P ligands derived from (i )-binaphthol has been considered by Gladiali et al. in the asymmetric rhodium-catalysed hydrogen-transfer reduction of acetophenone performed in the presence of i-PrOH as the hydrogen donor.It was noted that racemisation occurred when the reaction time increased and consequently the corresponding alcohol was obtained in only low enantioselectivities (< 5% ee) as shown in Scheme 9.21. Similar results were more recently reported by these authors by using iridium combined with the same ligands. ... [Pg.284]

Scheme 5.9 illustrates some of the conditions that have been developed for the reductive deoxygenation of alcohols. Entries 1 to 4 illustrate the most commonly used methods for generation of thiono esters and their reduction by tri-M-butylstannane. These include formation of thiono carbonates (Entry 1), xanthates (Entry 2), and thiono imidazolides (Entries 3 and 4). Entry 5 is an example of use of dimethyl phosphite as the hydrogen donor. Entry 6 uses r .s-(trimethylsilyl)silane as the hydrogen atom donor. [Pg.433]

Benzophenone has also been found to be photoreduced in the presence of amines as hydrogen donors, although less efficiently than in the presence of benzhydrol or isopropyl alcohol. The photoreduction of ketones in aromatic amines is thought not to go by the same mechanism as the photoreduction in alcohols, for the following reasons ... [Pg.60]

On the other hand a direct hydrogen transfer through a Meerwein-Ponndorf mechanism, involving coordination of both the donor alcohol and the ketone to the copper site may also be considered. In this case, by using alcohols other than 2-propanol, we could expect some difference in stereochemistry. This would also imply the possibility of carrying out the enantioselective reduction of a prochiral ketone with a chiral alcohol as donor. [Pg.298]

A third possibility is represented by a two-step mechanism where the donor alcohol is dehydrogenated and the ketone reduced by the H2 produced. In this case, the easier the donor alcohol is dehydrogenated, the higher is the hydrogen availability on the catalyst surface and the faster is the reaction. If the donor is slowly dehydrogenated, the hydrogen availability is lower. [Pg.298]

Therefore, the high activity of Cu/Si02 in transferring hydrogen from a donor alcohol may be due not only, as already mentioned, to its ability to activate molecular H2, but also to its dehydrogenation activity. [Pg.300]

For the hydrogen transfer reactions, the substrate (0.100 g, 0.64 mmol) was dissolved in anhydrous n-heptane (8 mL) and the solution transferred under N2 into a glass reaction vessel where the catalyst (0.100 g) had been previously treated. Catalytic tests were carried out with magnetic stirring under N2 at boiling point temperature with 2-propanol and 90°C or 140°C with other donor alcohols. [Pg.300]

Different results were obtained using allylic alcohols as terminating agents. In spite of the expected reactivity of the alcoholic function as hydrogen donor only products deriving from the reaction of the double bond were obtained (23) according to the general pattern previously described for Heck-type reactions with allylic alcohols (24). [Pg.452]

The last reaction we consider here, hydrogenolysis, is the most simple and straightforward but at the same time it is the most difficult to control, because the high hydrogen transfer rate adversely affects every step of the sequence. Although many hydrogen donors are available the one that led to the most satisfactory results was benzyl alcohol (29). [Pg.455]

Tanaka and Kakiuchi (6) proposed catalyst activation via a hydrogen donor such as an alcohol as a refinement to the mechanism discussed by Fischer (7) for anhydride cured epoxies in the presence of a tertiary amine. The basic catalyst eliminates esterification reactions (8). Shechter and Wynstra ( ) further observed that at reaction conditions BDMA does not produce a homopolymerization of oxiranes. [Pg.276]

Iridium-catalyzed transfer hydrogenation of aldehyde 73 in the presence of 1,1-dimethylallene promotes tert-prenylation [64] to form the secondary neopentyl alcohol 74. In this process, isopropanol serves as the hydrogen donor, and the isolated iridium complex prepared from [Ir(cod)Cl]2, allyl acetate, m-nitrobenzoic acid, and (S)-SEGPHOS is used as catalyst. Complete levels of catalyst-directed diastereoselectivity are observed. Exposure of neopentyl alcohol 74 to acetic anhydride followed by ozonolysis provides p-acetoxy aldehyde 75. Reductive coupling of aldehyde 75 with allyl acetate under transfer hydrogenation conditions results in the formation of homoallylic alcohol 76. As the stereochemistry of this addition is irrelevant, an achiral iridium complex derived from [Ir(cod)Cl]2, allyl acetate, m-nitrobenzoic acid, and BIPHEP was employed as catalyst (Scheme 5.9). [Pg.120]

Kragl and Wandrey made a comparison for the asymmetric reduction of acetophenone between oxazaborolidine and alcohol dehydrogenase.[59] The oxazaborolidine catalyst was bound to a soluble polystyrene [58] and used borane as the hydrogen donor. The carbonyl reductase was combined with formate dehydrogenase to recycle the cofactor NADH which acts as the hydrogen donor. Both systems were run for a number of residence times in a continuously operated membrane reactor and were directly comparable. With the chemical system, a space-time yield of 1400 g L"1 d"1 and an ee of 94% were reached whereas for the enzymatic system the space-time yield was 88 g L 1 d"1 with an ee of >99%. The catalyst half-life times were... [Pg.99]

In the transition metal-catalyzed reactions described above, the addition of a small quantity of base dramatically increases the reaction rate [17-21]. A more elegant approach is to include a basic site into the catalysts, as is depicted in Scheme 20.13. Noyori and others proposed a mechanism for reactions catalyzed with these 16-electron ruthenium complexes (30) that involves a six-membered transition state (31) [48-50]. The basic nitrogen atom of the ligand abstracts the hydroxyl proton from the hydrogen donor (16) and, in a concerted manner, a hydride shift takes place from the a-position of the alcohol to ruthenium (a), re-... [Pg.593]

The hydrogen donors vary widely from heteroatom-containing compounds such as alcohols, amines, acids and cyclic ethers to hydrocarbons such as alkanes (Table 20.1). The choice of donor is largely dependent on several issues ... [Pg.597]

Alcohols have always been the major group of hydrogen donors. Indeed, they are the only hydrogen donors that can be used in Meerwein-Ponndorf-Verley (MPV) reductions. 2-Propanol (16) is most commonly used both in MPV reductions and in transition metal-catalyzed transfer hydrogenations. It is generally available and cheap, and its oxidation product, acetone (14), is nontoxic and can usually be removed readily from the reaction mixture by distillation. This may have the additional advantage that the redox equilibrium is shifted even more into the direction of the alcohol. As a result of sigma inductive electronic ef-... [Pg.598]


See other pages where Hydrogen donors alcohols is mentioned: [Pg.213]    [Pg.220]    [Pg.5]    [Pg.321]    [Pg.310]    [Pg.33]    [Pg.270]    [Pg.271]    [Pg.273]    [Pg.279]    [Pg.216]    [Pg.398]    [Pg.156]    [Pg.321]    [Pg.140]    [Pg.142]    [Pg.153]    [Pg.155]    [Pg.92]    [Pg.234]    [Pg.383]    [Pg.7]    [Pg.526]    [Pg.599]   
See also in sourсe #XX -- [ Pg.35 , Pg.48 ]




SEARCH



Alcohols as hydrogen donors

Alcohols hydrogen

Alcohols hydrogenation

Benzyl alcohols hydrogen donor

Donor hydrogenation

Hydrogenation hydrogen donors

© 2024 chempedia.info