Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium complexes, 16 electron

The emission can also be quenched by electron donors causing reduction of the ruthenium complex ion. [Pg.26]

Let us now examine sample sets of data. We shall consider two reactions, the formation of a biradical1 [Eq. (7-10)] and an electron transfer reaction between two ruthenium complexes [Eq. (7-11)], in which LN represent nitrogen-donor ligands specified in the original reference.2 The chemical equations are... [Pg.157]

Intervalence Charge Transfer Emd Electron Exchange Studies of Dinuclear Ruthenium Complexes Robert J. Crutchley... [Pg.512]

In 2000, these authors also developed a very efficient diphosphine-bithiophene ligand, tetraMe-BITIOP, which is depicted in Scheme 8.29. The ruthenium complex of this electron-rich diphosphine was used as the catalyst in asymmetric hydrogenation reactions of prostereogenic carbonyl functions of a-... [Pg.263]

A correlation of isomer shift, electronic configuration, and calculated -electron densities for a number of ruthenium complexes in analogy to the Walker-Wertheim-Jaccarino diagram for iron compounds has been reported by Clausen et al. [ 127]. Also useful is the correlation between isomer shift and electronegativity as communicated by Clausen et al. [128] for ruthenium trihalides where the isomer shift appears to increase with increasing Mulliken electronegativity. [Pg.276]

Rhodium and ruthenium complexes have also been studied as effective catalysts. Rh(diphos)2Cl [diphos = l,2-bis(diphenyl-phosphino)ethane] catalyzed the electroreduction of C02 in acetonitrile solution.146 Formate was produced at current efficiencies of ca. 20-40% in dry acetonitrile at ca. -1.5 V (versus Ag wire). It was suggested that acetonitrile itself was the source of the hydrogen atom and that formation of the hydride HRh(diphos)2 as an active intermediate was involved. Rh(bpy)3Cl3, which had been used as a catalyst for the two-electron reduction of NAD+ (nicotinamide adenine dinucleotide) to NADH by Wienkamp and Steckhan,147 has also acted as a catalyst for C02 reduction in aqueous solutions (0.1 M TEAP) at -1.1 V versus SCE using Hg, Pb, In, graphite, and n-Ti02 electrodes.148 Formate was the main... [Pg.378]

Furthermore, the utilization of preformed films of polypyrrole functionalized by suitable monomeric ruthenium complexes allows the circumvention of problems due to the moderate stability of these complexes to aerial oxidation when free in solution. A similar CO/HCOO-selectivity with regards to the substitution of the V-pyrrole-bpy ligand by an electron-with-drawing group is retained in those composite materials.98 The related osmium-based redox-active polymer [Os°(bpy)(CO)2] was prepared, and is also an excellent electrocatalyst for the reduction of C02 in aqueous media.99 However, the selectivity toward CO vs. HCOO- production is lower. [Pg.481]

A number of mechanistic pathways have been identified for the oxidation, such as O-atom transfer to sulfides, electrophilic attack on phenols, hydride transfer from alcohols, and proton-coupled electron transfer from hydroquinone. Some kinetic studies indicate that the rate-determining step involves preassociation of the substrate with the catalyst.507,508 The electrocatalytic properties of polypyridyl oxo-ruthenium complexes have been also applied with success to DNA cleavage509,5 and sugar oxidation.511... [Pg.499]

Molecular engineering of ruthenium complexes that can act as panchromatic CT sensitizers for Ti02-based solar cells presents a challenging task as several requirements have to be fulfilled by the dye, which are very difficult to be met simultaneously. The lowest unoccupied molecular orbitals (LUMOs) and the highest occupied molecular orbitals (HOMOs) have to be maintained at levels where photo-induced electron transfer into the Ti02 conduction band and regeneration... [Pg.727]

Based on extensive screening of hundreds of ruthenium complexes, it was discovered that the sensitizer s excited state oxidation potential should be negative of at least —0.9 V vs. SCE, in order to inject electrons efficiently into the Ti02 conduction band. The ground state oxidation potential should be about 0.5 V vs. SCE, in order to be regenerated rapidly via electron donation from the electrolyte (iodide/triiodide redox system) or a hole conductor. A significant decrease in electron injection efficiencies will occur if the excited and ground state redox potentials are lower than these values. [Pg.728]

With regard to biosensor applications, a wide variety of electrochemically active species (ferrocene, ruthenium complexes, or carbon and metal (Pt, Pd, Au...) [185,186] were also introduced into the sol-gel matrices or adsorbed to improve the electron transfer from the biomolecules to the conductive support [187,188]. For instance, glucose oxidase has been trapped in organically modified sol-gel chitosan composite with adsorbed ferrocene to construct a low-cost biosensor exhibiting high sensitivity and good stability [189]. [Pg.466]

They found almost complete quenching of the emission from the ruthenium complex and in addition the covalently linked compound considerably enhanced electron transfer to relay systems of aligned viologen units on micelles and polymers. [Pg.16]


See other pages where Ruthenium complexes, 16 electron is mentioned: [Pg.178]    [Pg.23]    [Pg.3]    [Pg.41]    [Pg.252]    [Pg.178]    [Pg.274]    [Pg.73]    [Pg.190]    [Pg.204]    [Pg.214]    [Pg.174]    [Pg.249]    [Pg.148]    [Pg.245]    [Pg.623]    [Pg.141]    [Pg.598]    [Pg.733]    [Pg.740]    [Pg.744]    [Pg.749]    [Pg.750]    [Pg.754]    [Pg.153]    [Pg.611]    [Pg.160]    [Pg.150]    [Pg.7]    [Pg.367]    [Pg.26]    [Pg.307]    [Pg.497]    [Pg.586]   
See also in sourсe #XX -- [ Pg.593 ]




SEARCH



© 2024 chempedia.info