Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen bromide, production

The use of a concentrated sodium hydroxide solution (10 N) in sufficient volume to neutralise all hydrogen bromide product formed during the reaction time ensures that even trace levels of HBr will not be released from the receiver to the vent. [Pg.273]

MarkownikofT s rule The rule states that in the addition of hydrogen halides to an ethyl-enic double bond, the halogen attaches itself to the carbon atom united to the smaller number of hydrogen atoms. The rule may generally be relied on to predict the major product of such an addition and may be easily understood by considering the relative stabilities of the alternative carbenium ions produced by protonation of the alkene in some cases some of the alternative compound is formed. The rule usually breaks down for hydrogen bromide addition reactions if traces of peroxides are present (anti-MarkownikofT addition). [Pg.251]

Equip a 1 litre bolt-head flask with dropi)ing fuuncl and a double surface reflux condenser to the top of the latter attach a device (e.g.. Fig. II, 8, 1. c) for the absorption of the hydrogen bromide evolved. Place 100 g. (108 ml.) of dry iso-valeric acid (Section 111,80) and 12 g. of pmified red phosphorus (Section 11,50,5) in the flask. Add 255 g. (82 ml.) of dry bromine (Section 11,49,5) slowly through the dropping funnel at such a rate that little or no bromine is lost with the hydrogen bromide evolved the addition occupies 2-3 hours. Warm the reaction mixture on a water bath until the evolution of hydrogen bromide is complete and the colour of the bromine has disappeared. Pour off the liquid reaction product into a Claisen flask and distil mider the reduced pressure of a water pump. Collect the a-bromo-wo-valeryl bromide at 117-122°/25-30 mm. The yield is 150 g. [Pg.999]

Kharasch s earliest studies in this area were carried out in collab oration with graduate student Frank R Mayo Mayo performed over 400 experi ments in which allyl bromide (3 bromo 1 propene) was treated with hydrogen bromide under a variety of conditions and determined the distribution of the normal and abnormal products formed during the reaction What two prod ucts were formed Which is the product of addition in accordance with Markovmkovs rule Which one corresponds to addition opposite to the rule ... [Pg.243]

A secondary alkyl radical is more stable than a primary radical Bromine therefore adds to C 1 of 1 butene faster than it adds to C 2 Once the bromine atom has added to the double bond the regioselectivity of addition is set The alkyl radical then abstracts a hydrogen atom from hydrogen bromide to give the alkyl bromide product as shown m... [Pg.243]

Give the major organic product formed when hydrogen bromide... [Pg.245]

In a second example addition of hydrogen bromide converts 2 butene which is achiral to 2 bromobutane which is chiral But as before the product is racemic because... [Pg.297]

When a reactant is chiral but optically inactive because it is racemic any products derived from its reactions with optically inactive reagents will be optically inactive For example 2 butanol is chiral and may be converted with hydrogen bromide to 2 bromo butane which is also chiral If racemic 2 butanol is used each enantiomer will react at the same rate with the achiral reagent Whatever happens to (/ ) (—) 2 butanol is mir rored m a corresponding reaction of (5) (+) 2 butanol and a racemic optically inactive product results... [Pg.299]

Both resonance forms of the allylic carbocation from 1 3 cyclopentadiene are equivalent and so attack at either of the carbons that share the positive charge gives the same product 3 chlorocyclopentene This is not the case with 1 3 butadiene and so hydrogen halides add to 1 3 butadiene to give a mixture of two regioisomeric allylic halides For the case of electrophilic addition of hydrogen bromide at -80°C... [Pg.405]

When the major product of a reaction is the one that is formed at the fastest rate we say that the reaction is governed by kinetic control Most organic reactions fall into this category and the electrophilic addition of hydrogen bromide to 1 3 butadiene at low temperature is a kmetically controlled reaction... [Pg.406]

When however the ionic addition of hydrogen bromide to 1 3 butadiene is car ried out at room temperature the ratio of isomeric allylic bromides observed is differ ent from that which is formed at — 80°C At room temperature the 1 4 addition product predominates... [Pg.406]

Clearly the temperature at which the reaction occurs exerts a major influence on the product composition To understand why an important fact must be added The 1 2 and 1 4 addition products interconvert rapidly by allylic rearrangement at elevated tempera ture m the presence of hydrogen bromide Heating the product mixture to 45°C m the presence of hydrogen bromide leads to a mixture m which the ratio of 3 bromo 1 butene to 1 bromo 2 butene is 15 85... [Pg.406]

Reaction with Hydrogen and Metals. Bromine combines directiy with hydrogen at elevated temperatures and this is the basis for the commercial production of hydrogen bromide [10036-10-6]. Heated charcoal and finely divided platinum metals are catalysts for the reaction (17). [Pg.280]

A considerable amount of hydrobromic acid is consumed in the manufacture of inorganic bromides, as well as in the synthesis of alkyl bromides from alcohols. The acid can also be used to hydrobrominate olefins (qv). The addition can take place by an ionic mechanism, usually in a polar solvent, according to Markownikoff s rule to yield a secondary alkyl bromide. Under the influence of a free-radical catalyst, in aprotic, nonpolar solvents, dry hydrogen bromide reacts with an a-olefin to produce a primary alkyl bromide as the predominant product. Primary alkyl bromides are useful in synthesizing other compounds and are 40—60 times as reactive as the corresponding chlorides (6). [Pg.291]

Hydrogen hahdes normally add to form 1,2-dihaLides, though an abnormal addition of hydrogen bromide is known, leading to 3-bromo-l-chloropropane [109-70-6], the reaction is beUeved to proceed by a free-radical mechanism. Water can be added by treatment with sulfuric acid at ambient or lower temperatures, followed by dilution with water. The product is l-chloro-2-propanol [127-00-4]. [Pg.33]

In the late 1980s, however, the discovery of a noble metal catalyst that could tolerate and destroy halogenated hydrocarbons such as methyl bromide in a fixed-bed system was reported (52,53). The products of the reaction were water, carbon dioxide, hydrogen bromide, and bromine. Generally, a scmbber would be needed to prevent downstream equipment corrosion. However, if the focus of the control is the VOCs and the CO rather than the methyl bromide, a modified catalyst formulation can be used that is able to tolerate the methyl bromide, but not destroy it. In this case the methyl bromide passes through the bed unaffected, and designing the system to avoid downstream effects is not necessary. Destmction efficiencies of hydrocarbons and CO of better than 95% have been reported, and methyl bromide destmctions between 0 and 85% (52). [Pg.514]

The rate of addition is regulated by the rate of evolution of hydrogen bromide. The yield of product is essentially the same whether the reaction mixture is held at 80-85° or at room temperature. [Pg.9]

Product mixtures from radical-chain addition of hydrogen chloride to alkenes are much more complicated than is the case for addition of hydrogen bromide. The problem is that the rate of abstraction of hydrogen from hydrogen chloride is not fast relative to the rate of addition of the alkyl radical to the alkene. This results in the formation of low-... [Pg.711]


See other pages where Hydrogen bromide, production is mentioned: [Pg.666]    [Pg.666]    [Pg.301]    [Pg.281]    [Pg.538]    [Pg.571]    [Pg.679]    [Pg.990]    [Pg.1071]    [Pg.113]    [Pg.149]    [Pg.242]    [Pg.243]    [Pg.407]    [Pg.675]    [Pg.909]    [Pg.322]    [Pg.30]    [Pg.294]    [Pg.42]    [Pg.311]    [Pg.357]    [Pg.5]    [Pg.44]    [Pg.54]    [Pg.91]    [Pg.317]    [Pg.370]    [Pg.588]    [Pg.590]    [Pg.663]   


SEARCH



Bromide Products

Bromides hydrogenation

Hydrogen bromid

Hydrogen bromide

Hydrogen bromide, production excited

© 2024 chempedia.info