Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen atmospheres

Another method which should be cited apart from the others is to pyrolyze the sample in a hydrogen atmosphere. The sulfur is converted to H2S which darkens lead-acetate-impregnated paper. The speed of darkening, measured by an optical device, provides the concentration measurement. This method attains sensitivity thresholds of 0.02 ppm. [Pg.32]

Silicon is prepared commercially by heating silica and carbon in an electric furnace, using carbon electrodes. Several other methods can be used for preparing the element. Amorphous silicon can be prepared as a brown powder, which can be easily melted or vaporized. The Gzochralski process is commonly used to produce single crystals of silicon used for solid-state or semiconductor devices. Hyperpure silicon can be prepared by the thermal decomposition of ultra-pure trichlorosilane in a hydrogen atmosphere, and by a vacuum float zone process. [Pg.33]

The usual commercial form of the element is powder, but it can be consolidated by pressing and resistance-sintering in a vacuum or hydrogen atmosphere. This process produces a compact shape in excess of 90 percent of the density of the metal. [Pg.135]

Ethyl 2-nitro-3-(5-benzyloxyindoT3-yl)propanoate (3.7 g, 0.01 mol) was dissolved in abs. ethanol (50 ml) and hydrogenated over PtO catalyst (EOg) until H2 uptake ceased (about 1.75 h). The solution was purged with nitrogen and 20% aq. NaOH solution (4.0 g) w as added. A hydrogen atmosphere was re-established and the hydrolysis was allowed to proceed overnight. The solution was diluted with water (20 ml) and filtered. The pH of the filtrate was adjusted to 6 with HOAc and heated to provide a solid precipitate. The mixture was cooled and filtered to provide 5-benzyloxytryptophan (2.64 g). [Pg.133]

Hydrogen atmospheres, Their Influence on Serviceability ofKefractories, paper 2, Babcox Wilcox Co., Refractories Division, Augusta, Ga., 1971. [Pg.139]

The Tatoray process, which was developed by Toray Industries, Inc., and is available for Hcense through UOP, can be appHed to the production of xylenes and benzene from feedstock that consists typically of toluene [108-88-3] either alone or blended with aromatics (particularly trimethylbenzenes and ethyl-toluenes). The main reactions are transalkylation (or disproportionation) of toluene to xylene and benzene or of toluene and trimethylbenzenes to xylenes in the vapor phase over a highly selective fixed-bed catalyst in a hydrogen atmosphere at 350—500°C and 1—5 MPa (10—50 atm). Ethyl groups are... [Pg.52]

A process based on a nickel catalyst, either supported or Raney type, is described ia Olin Mathieson patents (26,27). The reduction is carried out ia a continuous stirred tank reactor with a concentric filter element built iato the reactor so that the catalyst remains ia the reaction 2one. Methanol is used as a solvent. Reaction conditions are 2.4—3.5 MPa (350—500 psi), 120—140°C. Keeping the catalyst iaside the reactor iacreases catalyst lifetime by maintaining a hydrogen atmosphere on its surface at all times and minimises handling losses. Periodic cleaning of the filter element is required. [Pg.238]

Purification. Tellurium can be purified by distillation at ambient pressure in a hydrogen atmosphere. However, because of its high boiling point, tellurium is also distilled at low pressures. Heavy metal (iron, tin, lead, antimony, and bismuth) impurities remain in the still residue, although selenium is effectively removed if hydrogen distillation is used (21). [Pg.386]

The metallic monohaHdes zirconium chloride [14989-34-5] ZrCl, and zirconium bromide [31483-18-8] ZrBr, reversibly absorb hydrogen up to a limiting composition of ZrXH (131). These hydrides are less stable than the binary hydride ZrH2, and begin to disproportionate above 400°C to ZrH2 and ZrX in a hydrogen atmosphere (see also Hydrides). [Pg.433]

Carbide. Zirconium carbide [12020-14-3] nominally ZrC, is a dark gray brittle soHd. It is made typically by a carbothermic reduction of zirconium oxide in a induction-heated vacuum furnace. Alternative production methods, especially for deposition on a substrate, consist of vapor-phase reaction of a volatile zirconium haHde, usually ZrCl, with a hydrocarbon in a hydrogen atmosphere at 900—1400°C. [Pg.433]

Preparation. Boron carbide is most commonly produced by the reduction of boric oxide with carbon in an electric furnace between 1400 and 2300°C. In the presence of carbon, magnesium reduces boric oxide to boron carbide at 1400—1800°C. The reaction is best carried out in a hydrogen atmosphere in a carbon tube furnace. By-product magnesium compounds are removed by acid treatment. [Pg.220]

Ethylamines. Mono-, di-, and triethylamines, produced by catalytic reaction of ethanol with ammonia (330), are a significant outlet for ethanol. The vapor-phase continuous process takes place at 1.38 MPa (13.6 atm) and 150—220°C over a nickel catalyst supported on alumina, siUca, or sihca—alumina. In this reductive amination under a hydrogen atmosphere, the ratio of the mono-, di-, and triethylamine product can be controlled by recycling the unwanted products. Other catalysts used include phosphoric acid and derivatives, copper and iron chlorides, sulfates, and oxides in the presence of acids or alkaline salts (331). Piperidine can be ethylated with ethanol in the presence of Raney nickel catalyst at 200°C and 10.3 MPa (102 atm), to give W-ethylpiperidine [766-09-6] (332). [Pg.415]

Hydrogen Atmospheres Austenitic stainless steels, by virtue of their high chromium contents, are usually resistant to hydrogen atmospheres. [Pg.2470]

A solution of 0.2 g of cholestenone and 0.47 g of (< 3P)3RhCl in 150 ml of acetone is stirred under a hydrogen atmosphere for 3 days. The solvent is evaporated and the residue separated by thin layer chromatography to afford 5a-cholestan-3-one in 25-35% yield. ... [Pg.132]

The formation of fullerenes and CNTs has also been affected by their environmental atmosphere [22] and, in particular, a hydrogen atmosphere plays an important role in forming graphitic structures of multi-walled CNTs (MWCNTs) in the form of buckybundles [24]. Intercalation into MWCNTs has been difficult or impossible, because there is no space for intercalants to enter into a Russian-doll-type structure of the nanotubes. However, the buckybundles formed in the hydrogen arc discharge were found to be successfully intercalated with potassium and ferric chloride (FeCl3) without breaking the... [Pg.157]

Bj Pivaloyloxymethyl D(—)-Ot-aminobenzylpenicillinate. hydrochloride To a solution of pivaloyloxymethyl D(—)-a-azidobenzylpenicillinate (prepared as described above) in ethyl acetate (75 ml) a 0.2 M phosphate buffer (pH 2.2) (75 ml) and 10% palladium on carbon catalyst (4 g) were added, and the mixture was shaken in a hydrogen atmosphere for 2 hours at room temperature. The catalyst was filtered off, washed with ethyl acetate (25 ml) and phosphate buffer (25 ml), and the phases of the filtrate were separated. The aqueous phase was washed with ether, neutralized (pH 6.5 to 7.0) with aqueoussodium bicarbonate, and extracted with ethyl acetate (2 X 75 ml). To the combined extracts, water (75 ml) was added, and the pH adjusted to 25 with 1 N hydrochloric acid. The aqueous layer was separated, the organic phase extracted with water (25 ml), and the combined extracts were washed with ether, and freeze-dried. The desired compound was obtained as a colorless, amorphous powder. [Pg.1260]

Pure ruthenium powder or mixed ruthenium-molybdenum powders have been found able to effect good joints between molybdenum and tungsten. A eutectic melting above 1 900°C is formed, and joints produced in hydrogen atmospheres at 2 100°C operate satisfactorily at 1 500°C. A cobalt-palladium-gold alloy has also been reported to be useful in brazing molybdenum. [Pg.937]


See other pages where Hydrogen atmospheres is mentioned: [Pg.1687]    [Pg.104]    [Pg.442]    [Pg.445]    [Pg.300]    [Pg.418]    [Pg.191]    [Pg.466]    [Pg.466]    [Pg.393]    [Pg.118]    [Pg.209]    [Pg.209]    [Pg.281]    [Pg.289]    [Pg.430]    [Pg.434]    [Pg.410]    [Pg.443]    [Pg.449]    [Pg.287]    [Pg.247]    [Pg.1210]    [Pg.2120]    [Pg.2416]    [Pg.142]    [Pg.219]    [Pg.6]    [Pg.199]    [Pg.337]    [Pg.679]    [Pg.840]    [Pg.689]    [Pg.55]   
See also in sourсe #XX -- [ Pg.725 ]

See also in sourсe #XX -- [ Pg.725 ]

See also in sourсe #XX -- [ Pg.152 , Pg.158 ]

See also in sourсe #XX -- [ Pg.245 ]




SEARCH



Apparatus for hydrogenation at atmospheric pressure

Apparatus for hydrogenation at atmospheric pressure catalyst method)

Apparatus for hydrogenation at atmospheric pressure joints

Apparatus for hydrogenation at atmospheric pressure of a liquid

Apparatus for hydrogenation at atmospheric pressure of a solid

Apparatus for hydrogenation at atmospheric pressure with interchangeable ground glass

Atmosphere hydrogen peroxide

Atmosphere hydrogen-rich

Atmospheric dispersion of hydrogen

Atmospheric pollution hydrogen sulfide removal

Carbon monoxide hydrogen atmosphere

Desorption at Atmospheric Pressure of Hydrogen

Detectors hydrogen atmosphere flame ionization

Hydrogen and atmosphere

Hydrogen argon atmosphere

Hydrogen atmosphere 800 atomic weight

Hydrogen atmosphere flame ionization

Hydrogen atmosphere, effect

Hydrogen atmospheric

Hydrogen atmospheric concentration

Hydrogen atmospheric pressure

Hydrogen cyanide, atmosphere

Hydrogen early atmosphere

Hydrogen in argon atmosphere

Hydrogen in atmosphere

Hydrogen in the atmosphere

Hydrogen loss, atmospheric

Hydrogen residual atmosphere

Hydrogen sulfide atmospheric oxidation

Hydrogen sulfide in the atmosphere

Hydrogen sulfide reactions atmosphere

Hydrogen total atmospheric quantity

Hydrogen, atmosphere, aqueous phase

Hydrogen, atmosphere, aqueous phase chemistry

Hydrogenation (Liquid Product and Hydrogen Atmosphere)

Hydrogenation carbon monoxide-hydrogen atmosphere

Methanation carbon monoxide-hydrogen atmosphere

© 2024 chempedia.info