Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroformylations linear

Linear terminal olefins are the most reactive in conventional cobalt hydroformylation. Linear internal olefins react at less than one-third that rate. A single methyl branch at the olefinic carbon of a terminal olefin reduces its reaction rate by a factor of 10 (2). For rhodium hydroformylation, linear a-olefins are again the most reactive. For example, 1-butene is about 20—40 times as reactive as the 2-butenes (3) and about 100 times as reactive as isobutylene. [Pg.465]

The linear a olefins described m Section 14 15 are starting materials for the preparation of a variety of aldehydes by reaction with carbon monoxide The process is called hydroformylation... [Pg.711]

Often the aldehyde is hydrogenated to the corresponding alcohol. In general, addition of carbon monoxide to a substrate is referred to as carbonylation, but when the substrate is an olefin it is also known as hydroformylation. The eady work on the 0x0 synthesis was done with cobalt hydrocarbonyl complexes, but in 1976 a low pressure rhodium-cataly2ed process was commerciali2ed that gave greater selectivity to linear aldehydes and fewer coproducts. [Pg.166]

The 0x0 process is employed to produce higher alcohols from linear and branched higher olefins. Using a catalyst that is highly selective for hydroformylation of linear olefins at the terminal carbon atom. Shell converts olefins from the Shell higher olefin process (SHOP) to alcohols. This results in a product that is up to 75—85% linear when a linear feedstock is employed. Other 0x0 processes, such as those employed by ICI, Exxon, and BASE (all in Europe), produce oxo-alcohols from a-olefin feedstocks such alcohols have a linearity of about 60%. Enichem, on the other hand, produces... [Pg.441]

Pla.tinum. Platinum catalysts that utilize both phosphine and tin(Il) haUde ligands give good rates and selectivities, in contrast to platinum alone, which has extremely low or nonexistent hydroformylation activity. High specificity to the linear aldehyde from 1-pentene or 1-heptene is obtained using HPtSnClgCO(1 1P) (26), active at 100°C and 20 MPa (290 psi) producing 95% -hexanal from 1-pentene. [Pg.470]

The spectmm of oxo products ia Japan is far less diverse. Nearly 75% of Japan s total oxo capacity of 733,000 t is dedicated to the hydroformylation of propylene. 2-EH derived from -butyraldehyde is by far the dominant product. Other products iaclude linear alcohols and higher branched alcohols. Additionally, Japan is the world s principal source of branched heptyl alcohol. The three ptincipal Japanese oxo producers having slightly more than 70% of Japan s total oxo capacity are Mitsubishi Kasei, Kyowa Yuka, and Japan Oxocol. [Pg.472]

Primary Amyl Alcohols. Primary amyl alcohols (qv) are manufactured by hydroformylation of mixed butenes, followed by dehydrogenation (114). Both 1-butene and 2-butene yield the same product though in slightly different ratios depending on the catalyst and conditions. Some catalyst and conditions produce the alcohols in a single step. By modifying the catalyst, typically a cobalt carbonyl, with phosphoms derivatives, such as tri( -butyl)phosphine, the linear alcohol can be the principal product from 1-butene. [Pg.372]

It is noteworthy that a clear enhancement of selectivity for the linear hydro-formylation product is observed only with cdpp (Table 5.2-1, entry e). With all other ligands, the n/iso ratios are in the 2 to 4 range. While this is in accordance with known results in the case of PPI13 (entry a) and dppe (entry c) (in comparison to monophasic hydroformylation [69]) and also with reported results in the case of Natppts (entry b in comparison to the biphasic hydroformylation of 1-pentene in [BMIM][PF(3] [46]), it is more remarkable for the bidentate metallocene ligand dppf... [Pg.236]

Linear alcohols (C12-C26) are important chemicals for producing various compounds such as plasticizers, detergents, and solvents. The production of linear alcohols by the hydroformylation (Oxo reaction) of alpha olefins followed by hydrogenation is discussed in Chapter 5. They are also produced by the oligomerization of ethylene using aluminum alkyls (Ziegler catalysts). [Pg.207]

The catalytic hydroformylation of alkenes has been extensively studied. The selective formation of linear versus branched aldehydes is of capital relevance, and this selectivity is influenced by many factors such as the configuration of the ligands in the metallic catalysts, i.e., its bite angle, flexibility, and electronic properties [152,153]. A series of phosphinous amide ligands have been developed for influencing the direction of approach of the substrate to the active catalyst and, therefore, on the selectivity of the reaction. The use of Rh(I) catalysts bearing the ligands in Scheme 34, that is the phosphinous amides 37 (R ... [Pg.95]

The linear aldehyde usually is the desired product. Often, this aldehyde is converted to the corresponding alcohol. Both Co and Rh complexes are used in hydroformylation. In general, Rh catalysts are more active and produce a higher n/wo-ratio. Co catalysts have higher... [Pg.112]

Currently, worldwide production of aldehydes exceeds 7 million tons/year (1). Higher aldehydes are important intermediates in the synthesis of industrial solvents, biodegradable detergents, surfactants, lubricants, and other plasticizers. The process, called hydroformylation or more familiarly, the Oxo process, refers to the addition of hydrogen and the formyl group, CHO, across a double bond. Two possible isomers can be formed (linear or branched) and the linear isomer is the desired product for these applications. [Pg.243]

Much progress has been made on regioselective hydroformylation of terminal alkenes in favor of the linear product. In particular bidentate phosphine or phosphite ligands, which have a natural bite angle 9 of about 110°, will favor the linear product. The most successful ligand types are BISBI [49, 50], BIPHEPHOS [51,52], and XANTPHOS systems (Scheme 8) [53]. [Pg.153]

Recently, a new bidentate hemispherical chelating bisphosphite ligand based on a calixarene backbone has been designed for linear selective hydroformylation of alkenes (Scheme 9) [54], Excellent levels of regioselectivity have been observed, and even the intrinsic branched-selective hydroformylation of styrene could be overruled by this system. However, the system suffers from low catalytic activity. [Pg.154]

A recent example where Co2(CO)8 serves as a precatalyst is in the preparation of linear and branched aldehydes via propylene hydroformylation in supercritical C02 (93-186 bar 66-108 °C). Cyclohexane carbaldehyde is produced from cyclohexene using Co2(CO)8 and an acid RCOOH, or else is successful with another established Co catalyst, Co(OOCR)2, assumed to form in situ in the former case. Oligomerization of aldehydes such as n-butanal is achieved with Co2(CO)6L2 as catalyst (L = CO, PR3).1364... [Pg.116]

As demonstrated by Hoffmann and coworkers, hydroformylation can also be combined with an allylboration and a second hydroformylation, which allows the formation of carbocycles and also heterocycles [213]. A good regioselectivity in favor of the linear aldehyde was obtained by use of the biphephos ligand [214]. Reaction of the allylboronate 6/2-76 having an B-configuration with CO/H2 in the presence of catalytic amounts of Rh(CO)2(acac) and biphephos led to the lactol 6/2-80 via 6/2-77-79 (Scheme 6/2.17). In a separate operation, 6/2-80 was oxidized to give the lactone 6/2-81 using tetrabutyl ammonium perruthenate/N-methylmorpholine N-oxide. [Pg.434]


See other pages where Hydroformylations linear is mentioned: [Pg.105]    [Pg.149]    [Pg.105]    [Pg.149]    [Pg.458]    [Pg.467]    [Pg.467]    [Pg.473]    [Pg.380]    [Pg.73]    [Pg.374]    [Pg.118]    [Pg.234]    [Pg.235]    [Pg.238]    [Pg.283]    [Pg.17]    [Pg.24]    [Pg.225]    [Pg.162]    [Pg.219]    [Pg.220]    [Pg.220]    [Pg.222]    [Pg.233]    [Pg.233]    [Pg.253]    [Pg.404]    [Pg.76]    [Pg.147]    [Pg.153]    [Pg.153]    [Pg.155]    [Pg.175]   
See also in sourсe #XX -- [ Pg.98 , Pg.99 ]




SEARCH



Hydroformylation linear-regioselective

Hydroformylation product linearity

Hydroformylation, ruthenium catalyzed linearity

Hydroformylations to linear aldehydes

Linear selective hydroformylation

Linear selective hydroformylation alkenes

© 2024 chempedia.info