Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrodesulfurization limitations

There are high temperature and low temperature methods to remove sulfur from a fuel reformate stream. Low temperature cleanup, such as hydrodesulfurizing (limited to fuels with boiling end points below 205°C), is less difficult and lower in cost so should be used where possible, certainly with low temperature cells. Sulfur species in the fuel are converted to H2S, if necessary, then the H2S is trapped on zinc oxide. As previously mentioned, a minimum bed volume of the zinc oxide reactor is achieved at temperatures of 350 to 400°C. Simple... [Pg.217]

Sulfur Reduction There are high temperature and low temperature methods to remove sulfur from a fuel reformate. Low temperature cleanup, such as hydrodesulfurizing (limited to fuels... [Pg.266]

Simple conventional refining is based essentially on atmospheric distillation. The residue from the distillation constitutes heavy fuel, the quantity and qualities of which are mainly determined by the crude feedstock available without many ways to improve it. Manufacture of products like asphalt and lubricant bases requires supplementary operations, in particular separation operations and is possible only with a relatively narrow selection of crudes (crudes for lube oils, crudes for asphalts). The distillates are not normally directly usable processing must be done to improve them, either mild treatment such as hydrodesulfurization of middle distillates at low pressure, or deep treatment usually with partial conversion such as catalytic reforming. The conventional refinery thereby has rather limited flexibility and makes products the quality of which is closely linked to the nature of the crude oil used. [Pg.484]

If reaction (2-13) follows reaction (2-12) instantaneously, the effect will not be noticeable in the H2 signal [12]. In spite of these limitations, we conclude that TPS with mass spectrometric detection is a highly useful technique for studying the sulfidation of hydrotreating catalysts. We shall return to the sulfidation of molybdenum oxides in the chapters on photoemission (Chapter 3), ion spectroscopy (Chapter 4), and in a case study on hydrodesulfurization catalysts in Chapter 9. [Pg.36]

Mossbauer spectroscopy is one of the techniques that is relatively little used in catalysis. Nevertheless, it has yielded very useful information on a number of important catalysts, such as the iron catalyst for Fischer-Tropsch and ammonia synthesis, and the cobalt-molybdenum catalyst for hydrodesulfurization reactions. The technique is limited to those elements that exhibit the Mossbauer effect. Iron, tin, iridium, ruthenium, antimony, platinum and gold are the ones relevant for catalysis. Through the Mossbauer effect in iron, one can also obtain information on the state of cobalt. Mossbauer spectroscopy provides valuable information on oxidation states, magnetic fields, lattice symmetry and lattice vibrations. Several books on Mossbauer spectroscopy [1-3] and reviews on the application of the technique on catalysts [4—8] are available. [Pg.128]

Measurements of supported catalysts in diffuse reflection and transmission mode are in practice limited to frequencies above those where the support absorbs (below about 1250 cm-1). Infrared Emission Spectroscopy (IRES) offers an alternative in this case. When a material is heated to about 100 °C or higher, it emits a spectrum of infrared radiation in which all the characteristic vibrations appear as clearly recognizable peaks. Although measuring in this mode offers the attractive advantage that low frequencies such as those of metal-oxygen or sulfur-sulfur bonds are easily accessible, the technique has hardly been explored for the purpose of catalyst characterization. An in situ cell for IRES measurements and some experiments on Mo-O-S clusters of interest for hydrodesulfurization catalysts have been described by Weber etal. [11],... [Pg.224]

The structural differences between the various sulfur-containing molecules make it impractical to have a single rate expression applicable to all reactions in hydrodesulfurization. Each sulfur-containing molecule has its own hydrogenolysis kinetics that is usually complex because several successive equilibrium stages are involved and these are often controlled by internal diffusion limitations during refining. [Pg.147]

While the definitions of the various hydroprocesses are (as has been noted above) quite arbitrary, it may be difficult, if not impossible, to limit the process to any one particular reaction in a commercial operation. The prevailing conditions may, to a certain extent, minimize, cracking reactions during a hydrotreating operation. However, with respect to the heavier feedstocks, the ultimate aim of the operation is to produce as much low-sulfur liquid products as possible from the feedstock. Any hydrodesulfurization process that has been designed for application to the heavier oils and residua may require that hydrocracking and hydrodesulfurization occur simultaneously. [Pg.161]

However, there are more chances of localized heating in the catalyst bed and (in addition to the more expensive reactor design per unit volume of catalyst bed) it may be more difficult to remove contaminants from the bed as part of the catalyst regeneration sequence. For this reason alone, it is preferable that this type of reactor is limited to hydrodesulfurization of low-boiling feedstocks such as naphtha and kerosene and application to the higher-boiling heavy oils and residua is usually not recommended. [Pg.193]

Hydrodesulfurization catalysts are normally used as extrudates or as porous pellets, but the particle size and pore geometry have an important influence on process design-especially for the heavier feedstocks. The reaction rates of hydro-desulfurization catalysts are limited by the diffusion of the reactants into, and the products out of, the catalyst pore systems. Thus, as the catalyst particle size is decreased, the rate of desulfurization is increased (Figure 5-9) (Frost and (Nottingham, 1971) but the pressure differential across the catalyst bed also diminishes and a balance must be reached between reaction rate and pressure drop across the bed. [Pg.203]

In a hydrodesulfurization system, the hydrogenation function adds hydrogen to the tarry deposits. This reduces the concentration of coke precursors on the surface. There is, however, a slow accumulation of coke that reduces activity over a 1-2 year period. Refiners respond to this slow reduction in activity by raising the average temperature of the catalyst bed to maintain conversions. Eventually, however, an upper limit to the allowable temperature is reached and the catalyst must be removed and regenerated. [Pg.210]

High amounts of asphaltenes and resins require high hydrogen partial pressures and may actually limit the maximum level of hydrodesulfurization, or final traces of sulfur in the residuum may only be eliminated under extremely severe reaction conditions where hydrocracking is the predominant reaction in the process. High asphaltene and resin contents are also responsible for high viscosity (Figure 6-7) which may increase the resistance to mass transfer of the reactants... [Pg.249]

The next processing stage, hydrodesulfurization, is where most of the sulfur, some of the nitrogen, and the residual metals are removed. A limited amount of conversion also takes place. From the final reactor, the gas phase is separated, hydrogen is recirculated to the reaction section, and the liquid products are sent to a conventional fractionation section for separation into naphtha, middle distillates, and heavier streams. [Pg.374]

Observed transport limitations in the studies given in Table I depend upon the magnitude of the intrinsic reaction rate. Petroleum hydrodesulfurization (19-21), certain types of petroleum hydrogenations (22), or chemical decomposition reactions (11) are liquid-limiting and proceed slowly enough that only internal particle diffusion or combined pore diffusion and liquid-to-solid resistances are controlling. Chemical... [Pg.43]

A summary of reactor models used by various authors to interpret trickle-bed reactor data mainly from liquid-limiting petroleum hydrodesulfurization reactions (19-21) is given in Table I of reference (37). These models are based upon i) plug-flow of the liquid-phase, ii) the apparent rate of reaction is controlled by either internal diffusion or intrinsic kinetics, iii) the reactor operates isothermally, and iv) the intrinsic reaction rate is first-order with respect to the nonvolatile liquid-limiting reactant. Model 4 in this table accounts for both incomplete external and internal catalyst wetting by introduction of the effectiveness factor r)Tg developed especially for this situation (37 ). [Pg.45]


See other pages where Hydrodesulfurization limitations is mentioned: [Pg.89]    [Pg.146]    [Pg.123]    [Pg.382]    [Pg.721]    [Pg.47]    [Pg.441]    [Pg.222]    [Pg.190]    [Pg.434]    [Pg.98]    [Pg.192]    [Pg.345]    [Pg.226]    [Pg.168]    [Pg.196]    [Pg.197]    [Pg.213]    [Pg.219]    [Pg.201]    [Pg.60]    [Pg.421]    [Pg.470]    [Pg.108]    [Pg.257]    [Pg.51]    [Pg.944]    [Pg.86]    [Pg.2936]   
See also in sourсe #XX -- [ Pg.349 , Pg.435 , Pg.455 ]




SEARCH



Hydrodesulfuration

Hydrodesulfurization

Hydrodesulfurizer

© 2024 chempedia.info