Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon alloy systems

Iron-ruthenium bimetallic catalysts have also received considerable attention as interesting catalysts in Fischer-Tropsch synthesis [115,116]. It has been reported that the Fe-Ru alloy system results in catalysts that are more stable than monometallic iron catalysts [117], and that the hydrocarbon product distribution in CO hydrogenation can easily be modified when changing the relative proportions of the two metals [118]. [Pg.149]

BP. These nitrile alloy membranes are compounded from PVC, flexibilized by the addition of butadiene—acrylonitrile copolymers, PVC, and other proprietary ingredients. Typically reinforced with polyester scrim, NBP membranes are 1 mm thick and have a width of 1.5 m. They ate ptedominandy used in mechanically fastened roofing systems. NBP membranes exhibit excellent teat and puncture resistance as well as good weatherabihty, and remain flexible at low temperatures. They ate resistant to most chemicals but ate sensitive to aromatic hydrocarbons. The sheet is usually offered in light colors. The physical characteristics of NBP membranes have been described (15). [Pg.214]

Figure 1. Apparatus for the preparation of radical anions (11). On connection of the entire vessel to the vacuum system, traces of water and oxygen on the wall are removed by heating and discharging with a tesla coil. When the apparatus is filled with purified nitrogen through A, the weighed sample of the hydrocarbon is put into B through C, a piece of sodium is put into D, and dimethoxyethane is distilled into E, where a small amount of an Na-K alloy is added. After the system is again evacuated the solvent is distilled from E into B, the bulb E is,sealed off at F, and the sodium is sublimed to form a mirror on the wall of the bulb G. After tubes at C and H are sealed off, the apparatus is pumped to high vacuum for 1 hr and then sealed off at J. Then the solution of the hydrocarbon is poured from B into G. After a time varying from several minutes to several hours, a color is observed, and the sample is ready for optical and esr measurements. Figure 1. Apparatus for the preparation of radical anions (11). On connection of the entire vessel to the vacuum system, traces of water and oxygen on the wall are removed by heating and discharging with a tesla coil. When the apparatus is filled with purified nitrogen through A, the weighed sample of the hydrocarbon is put into B through C, a piece of sodium is put into D, and dimethoxyethane is distilled into E, where a small amount of an Na-K alloy is added. After the system is again evacuated the solvent is distilled from E into B, the bulb E is,sealed off at F, and the sodium is sublimed to form a mirror on the wall of the bulb G. After tubes at C and H are sealed off, the apparatus is pumped to high vacuum for 1 hr and then sealed off at J. Then the solution of the hydrocarbon is poured from B into G. After a time varying from several minutes to several hours, a color is observed, and the sample is ready for optical and esr measurements.
Mechanical components used in fuel systems such as pumps, valves, and bearings may contain copper or copper-containing alloys. As a fuel system component, copper is especially undesirable because it acts as a catalyst in promoting the oxidation of fuel paraffins to oxygen-rich, gumlike deposits. The following reaction sequence represents how copper ions can catalyze the oxidation and degradation of hydrocarbons. [Pg.141]

Pt-Rh/AROs catalysts are widely used in automotive-exhaust emission control. In these systems, Pt is generally used for the oxidation of CO and hydrocarbons and Rh is active for the reduction of nitric oxide to N2. HRTEM and AEM show two discrete particle morphologies and Pt-Rh alloy particles (Lakis et al 1995). EM studies aimed at understanding the factors leading to deactivation, surface segregation of one metal over the other and SMSI are limited. There are great opportunities for EM studies, in particular, of surface enrichment, and defects and dislocations in the complex alloy catalysts as sites for SMSI. [Pg.201]

Compensation trends are found in the kinetic data reported for the catalytic hydrogenation of several hydrocarbons on bimetallic systems, including the reactions of ethylene on Ni-Cu and on Ni-Au alloys (252), buta-1,3-diene on Ni- Cu alloys (183), benzene on Ni-Cu (but the behavior of benzene on Cu-Pd was less obviously compensatory) (253), and the liquid phase hydrogenation of nitrobenzene on Pd Ag alloys (56). The kinetic characteristics of but-2-yne on Pd-Au alloys (28) was different in that E underwent little variation, while the value of log A systematically diminished as the proportion of palladium in the alloys was reduced. It was concluded that palladium was the active constituent and gold was an inactive diluent. [Pg.296]

Branched oligomethylsiloxanes PMS-lb - PMS-3b are soluble in aromatic hydrocarbons, do not corrode construction materials and alloys, are nontoxic. If heated above 200 °C, they form moderately toxic volatile substances, which excite the nervous system and cause conjunctivitis and inflammation of upper airways. The temperature of self-inflammation of these liquids exceeds 340 °C. Their coefficient of volumetric expansion ranges from 0.0013 to 0.0009 cm3/grad. [Pg.208]

Battelle Pacific Northwest National Laboratories (PNNL, Richland, WA) are developing microreactors that produce synthesis gas. These reactors can be mass-produced to yield efficient, compact and cost-effective systems, and they have been made from copper, aluminum, stainless steel, high-temperature alloys, plastics and ceramics. Conventional technologies cannot take full advantage of the intrinsically rapid surface reactions involved in the catalytic conversion of hydrocarbon fuels, but microreactors with integrated catalyst structures can61. [Pg.126]

Early higher pressure reaction smdies over Pt-Sn model catalysts by Paffett [62,63] and Somorjai [64, 65] and their coworkers revealed new insights into hydrocarbon catalysis in such systems. Szanyi et al. [62] showed that n-butane hydrogenolysis under moderate pressures (1-200 Torr H3/butane=20) and temperatures (up to 650 K) could be carried out without disruption of the ordered Sn/Pt(lll) surface alloys. This established that such catalytic reactions could be studied while maintaining the composition and geometric structure of these alloys under reducing reaction conditions (but not catalytic oxidation due to the aggressive interaction of O3 with Sn). These ordered Sn/Pt surfaces are qualitatively different from those in many studies of promoters and poisons, or disordered alloys, e.g., Au-Pt, in which the quantitative information on ensemble sizes available for reactions is difficult to determine. [Pg.45]

The studies reviewed here focus on Sn/Pt because of the opportunity afforded by the ordered alloys formed in this system for improving our basic understanding, as well as the commercial importance of Pt-Sn catalysts in naphtha reforming and their potential for other selective hydrogenation and dehydrogenation reactions. These studies combined detailed structural characterization of the alloy surfaces with UHV studies of adsorption and reaction of hydrocarbons and other small molecules, and measurements of the rate and selectivity of catalytic reactions at atmospheric pressure over these model catalysts. [Pg.48]

It was discovered that the ability of metals to form solid solutions (alloys) in the bulk is not necessary for a bimetallic system to be of interest as a catalyst. An example is the ruthenium-copper system, in which the two components are virtually completely immiscible in the bulk. This system exhibits an effect of the copper (in particular, selective inhibition of hydrocarbon hydrogenoly-sis) similar to that exhibited by the nickel-copper system, in which the components are completely miscible. Although ruthenium and copper do not form solid solutions in the bulk, they do exhibit a strong interaction at copper-ruthenium interfaces. The copper tends to cover the surface of the ruthenium, analogous to a chemisorbed layer. As a result, the copper has a marked effect on the chemisorption and catalytic properties of the ruthenium. [Pg.32]


See other pages where Hydrocarbon alloy systems is mentioned: [Pg.184]    [Pg.176]    [Pg.503]    [Pg.157]    [Pg.351]    [Pg.703]    [Pg.159]    [Pg.302]    [Pg.130]    [Pg.521]    [Pg.200]    [Pg.11]    [Pg.168]    [Pg.249]    [Pg.661]    [Pg.766]    [Pg.83]    [Pg.97]    [Pg.250]    [Pg.259]    [Pg.60]    [Pg.266]    [Pg.53]    [Pg.232]    [Pg.163]    [Pg.557]    [Pg.460]    [Pg.185]    [Pg.438]    [Pg.539]    [Pg.287]    [Pg.70]    [Pg.99]    [Pg.499]    [Pg.168]    [Pg.6]    [Pg.299]    [Pg.1362]    [Pg.1560]   
See also in sourсe #XX -- [ Pg.191 , Pg.192 , Pg.193 , Pg.194 , Pg.195 , Pg.196 , Pg.197 ]




SEARCH



Alloy systems

© 2024 chempedia.info