Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydride reduction of carbonyl

The introduction of tritium into molecules is most commonly achieved by reductive methods, including catalytic reduction by tritium gas, PH2], of olefins, catalytic reductive replacement of halogen (Cl, Br, or I) by H2, and metal pH] hydride reduction of carbonyl compounds, eg, ketones (qv) and some esters, to tritium-labeled alcohols (5). The use of tritium-labeled building blocks, eg, pH] methyl iodide and pH]-acetic anhydride, is an alternative route to the preparation of high specific activity, tritium-labeled compounds. The use of these techniques for the synthesis of radiolabeled receptor ligands, ie, dmgs and dmg analogues, has been described ia detail ia the Hterature (6,7). [Pg.438]

Tributyltin hydride reduction of carbonyl compounds. The reduction of carbonyl compounds with metal hydrides can also proceed via an electron-transfer activation in analogy to the metal hydride insertion into TCNE.188 Such a notion is further supported by the following observations (a) the reaction rates are enhanced by light as well as heat 189 (b) the rate of the reduction depends strongly on the reduction potentials of ketones. For example, trifluoroacetophenone ( re<1 = —1.38 V versus SCE) is quantitatively reduced by Bu3SnH in propionitrile within 5 min, whereas the reduction of cyclohexanone (Erea — 2.4 V versus SCE) to cyclohexanol (under identical... [Pg.252]

Allylic acetates are usually prepared by esterification from allylic alcohols. However, the corresponding alcohols are often only accessible by the fairly expensive hydride reduction of carbonyl compounds. Consequently, direct allylic functionalization of easily available olefins has been intensively investigated. Most of these reactions involve peroxides or a variety of metal salts.However, serious drawbacks of these reactions, (e.g. toxicity of some metals, stoichiometric reaction conditions, or nongenerality) may be responsible for their infrequent use for the construction of allylic alcohols or acetates. [Pg.184]

Although aromatic rings can be hydrogenated, as you saw above, neither they nor the aldehyde product are reduced under these conditions and, as with hydride reductions of carbonyl compounds, we can draw up a sequence of reactivity towards hydrogenation. The precise ordering varies with the catalyst, especially with regard to the interpolation of the (less important, because other methods are usually better) carbonyl reductions (in yellow). Some catalysts are particularly selective... [Pg.623]

When a proton source such as ethanol is used, sodium reduces esters, aldehydes and ketones to alcohols and the reduction is known as Bouveault-Blanc reduction s . But metal hydride reduction of carbonyl compounds gives higher yields of alcohols. [Pg.255]

Nucleophilic acyl addition was discussed in sec. 2.5. The main examples of four-center transition state additions are hydroboration, which will be discussed in chapter 5, and hydride reduction of carbonyls, which will be discussed in section 4.2-4.5. This section will focus on categories 1 and 2. [Pg.148]

Oiu first studies involved hydride reductions of carbonyl groups. We compared the... [Pg.18]

Use of as a phase-transfer catalyst for the boro-hydride reduction of carbonyl compounds... [Pg.271]

The well-known reduction of carbonyl groups to alcohols has been refined in recent studies to render the reaction more regioselective and more stereoselective Per-fluorodiketones are reduced by lithium aluminum hydride to the corresponding diols, but the use of potassium or sodium borohydride allows isolation of the ketoalcohol Similarly, a perfluoroketo acid fluonde yields diol with lithium aluminum hydnde, but the related hydroxy acid is obtainable with potassium borohydnde [i f] (equations 46 and 47)... [Pg.308]

The chemical reduction of enamines by hydride again depends upon the prior generation of an imonium salt (111,225). Thus an equivalent of acid, such as perchloric acid, must be added to the enamine in reductions with lithium aluminum hydride. Studies of the steric course (537) of lithium aluminum hydride reductions of imonium salts indicate less stereoselectivity in comparison with the analogous carbonyl compounds, where an equatorial alcohol usually predominates in the reduction products of six-membered ring ketones. [Pg.428]

As with the reduction of carbonyl compounds discussed in the previous section, we ll defer a detailed treatment of the mechanism of Grignard reactions until Chapter 19. For the moment, it s sufficient to note that Grignard reagents act as nucleophilic carbon anions, or carbanions ( R ), and that the addition of a Grignard reagent to a carbonyl compound is analogous to the addition of hydride ion. The intermediate is an alkoxide ion, which is protonated by addition of F O"1 in a second step. [Pg.615]

The reduction of carbonyl compounds by reaction with hydride reagents (H -) and the Grignard addition by reaction with organomagnesium halides (R - +MgBr) are examples of nucleophilic carbonyl addition reactions. What analogous product do you think might result from reaction of cyanide ion with a ketone ... [Pg.651]

The homology between 22 and 21 is obviously very close. After lithium aluminum hydride reduction of the ethoxycarbonyl function in 22, oxidation of the resultant primary alcohol with PCC furnishes aldehyde 34. Subjection of 34 to sequential carbonyl addition, oxidation, and deprotection reactions then provides ketone 21 (31% overall yield from (—)-33). By virtue of its symmetry, the dextrorotatory monobenzyl ether, (/ )-(+)-33, can also be converted to compound 21, with the same absolute configuration as that derived from (S)-(-)-33, by using a synthetic route that differs only slightly from the one already described. [Pg.199]

Mehta et al. also studied the facial selectivities of 5,6-exo,eji o-disubstituted bicyclo[2.2.2]octan-2-ones 18 [75, 78]. These systems are related to the 2,3-exo,ex( -disubstituted 7-norbomanones 14, but differ in the direction of the carbonyl n face. Hydride reduction of 5,6-exo,ex( -disubstituted bicyclo[2.2.2] octan-2-ones (18) with NaBH and DIBAL-H and methylation with MeLi were smdied [75, 78],... [Pg.138]

Chelation Control. The stereoselectivity of reduction of carbonyl groups can be controlled by chelation when there is a nearby donor substituent. In the presence of such a group, specific complexation among the substituent, the carbonyl oxygen, and the Lewis acid can establish a preferred conformation for the reactant. Usually hydride is then delivered from the less sterically hindered face of the chelate so the hydroxy group is anti to the chelating substituent. [Pg.411]

In the fine chemical industry, reduction of carbonyl groups mainly relies on the use of complex metal hydrides sodium dihydrobis-(2-methoxyethoxy)-aluminate, commercialized as RedAl or Vitride is one of the most used (4). [Pg.293]

TiCl4 promotes reduction of carbonyl groups or acetals with R3SiH or R3SnH (Scheme 24) Other hydride sources are also effective.91 ... [Pg.408]

Rhin(bpy)3]3+ and its derivatives are able to reduce selectively NAD+ to 1,4-NADH in aqueous buffer.48-50 It is likely that a rhodium-hydride intermediate, e.g., [Rhni(bpy)2(H20)(H)]2+, acts as a hydride transfer agent in this catalytic process. This system has been coupled internally to the enzymatic reduction of carbonyl compounds using an alcohol dehydrogenase (HLADH) as an NADH-dependent enzyme (Scheme 4). The [Rhin(bpy)3]3+ derivative containing 2,2 -bipyridine-5-sulfonic acid as ligand gave the best results in terms of turnover number (46 turnovers for the metal catalyst, 101 for the cofactor), but was handicapped by slow reaction kinetics, with a maximum of five turnovers per day.50... [Pg.477]

The reduction of carbonyl compounds is most often better achieved by electrochemical methods or by using conventional hydride or hydrogenation reactions. Nevertheless the formation of benzpinacol from benzophenone, although now known for more than eighty years, is still a matter of study (4.16) 418>. [Pg.48]

The importance of reactions with complex, metal hydrides in carbohydrate chemistry is well documented by a vast number of publications that deal mainly with reduction of carbonyl groups, N- and O-acyl functions, lactones, azides, and epoxides, as well as with reactions of sulfonic esters. With rare exceptions, lithium aluminum hydride and lithium, sodium, or potassium borohydride are the... [Pg.216]

Asymmetric reduction of carbonyl compounds can usually be achieved either through direct catalytic hydrogenation or by metal hydride reduction. It should be mentioned here that reduction of carbonyl compounds by catalytic hydrogenation may not be chemoselective. Other co-existing functional groups such as the C=C bond may also undergo hydrogenation. [Pg.355]

Conjugate reduction.1 This stable copper(I) hydride cluster can effect conjugate hydride addition to a,p-unsaturated carbonyl compounds, with apparent utilization of all six hydride equivalents per cluster. No 1,2-reduction of carbonyl groups or reduction of isolated double bonds is observed. Undesirable side reactions such as aldol condensation can be suppressed by addition of water. Reactions in the presence of chlorotrimethylsilane result in silyl enol ethers. The reduction is stereoselective, resulting in hydride delivery to the less-hindered face of the substrate. [Pg.175]

Reduction of carbonyl compoundsThe reagent reduces aldehydes or ketones to alcohols in refluxing cyclohexane in 2-5 hours yields are 60-80%. The reduction probably involves hydride transfer from the carbon beta to the magnesium center. [Pg.197]

Sodium borohydride is a much milder reducing agent than lithium aluminium hydride and like the latter is used for the reduction of carbonyl compounds like aldehydes and ketones. However, under normal conditions it does not readily reduce epoxides, esters, lactones, acids, nitriles or nitro groups. [Pg.289]

Solid lithium aluminium hydride can be solublized in non-polar organic solvents with benzyltriethylammonium chloride. Initially, the catalytic effect of the lithium cation in the reduction of carbonyl compounds was emphasized [l-3], but this has since been refuted. A more recent evaluation of the use of quaternary ammonium aluminium hydrides shows that the purity of the lithium aluminium hydride and the dryness of the solvent are critical, but it has also been noted that trace amounts of water in the solid liquid system are beneficial to the reaction [4]. The quaternary ammonium aluminium hydrides have greater hydrolytic stability than the lithium salt the tetramethylammonium aluminium hydride is hydrolysed slowly in dilute aqueous acid and more lipophilic ammonium salts are more stable [4, 5]. [Pg.476]

Sodium dithionite is well established [ 1 ] as a powerful reducing agent under alkaline conditions. Its redox potential is close to that of sodium borohydride [2] and, in several respects, there are advantages in the use of sodium dithionite as an alternative to the metal hydrides under phase-transfer catalytic conditions, particularly in the reduction of carbonyl compounds [3],... [Pg.495]


See other pages where Hydride reduction of carbonyl is mentioned: [Pg.1062]    [Pg.1033]    [Pg.291]    [Pg.1062]    [Pg.1033]    [Pg.291]    [Pg.106]    [Pg.162]    [Pg.59]    [Pg.193]    [Pg.390]    [Pg.396]    [Pg.407]    [Pg.1335]    [Pg.89]    [Pg.561]    [Pg.520]    [Pg.235]    [Pg.102]    [Pg.264]    [Pg.415]   


SEARCH



Application of hydrides as reductants for coordinated carbonyl ligands

Carbonyl reduction

Hydride Reduction of a Carbonyl Group

Hydride carbonyl reduction

Hydride donors reduction of carbonyls

Pre-Reduction of Carbonyl Groups with Lithium Aluminum Hydride

Reduction carbonylation

Reduction of carbonyls

© 2024 chempedia.info