Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hormone-sensitive lipase activation

Two conditions in which the rate of ketone body formation is increased are hypoglycaemia and prolonged starvation in adults or short-term starvation in children. What is the mechanism for increasing the rate Although there are several fates for fatty acids in the liver, triacylglycerol, phospholipid and cholesterol formation and oxidation via the Krebs cycle, the dominant pathway is ketone body formation (Figure 7.20). Three factor regulate the rate of ketone body formation (i) hormone sensitive lipase activ-... [Pg.139]

When lipids are required by the body for energy, adipose cell hormone-sensitive lipase (activated by epinephrine, and inhibited by insulin) initiates degradation of stored triacyl glycerol. [Pg.485]

Regulation The concentration of free fatty acids in the blood is controlled by the rate at which hormone-sensitive triacylglycerol lipase hydrolyzes the triacylglycerols stored in adipose tissue. Glucagon, epinephrine and norepinephrine cause an increase in the intracellular level of cAMP which allosterically activates cAMP-dependent protein kinase. The kinase in turn phosphorylates hormone-sensitive lipase, activating it, and leading to the release of fatty acids into the blood. Insulin has the opposite effect it decreases the level of cAMP which leads to the dephosphorylation and inactivation of hormone-sensitive lipase. [Pg.328]

B.G. Slavin, J.M. Ong, and P.A. Kern, Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes, J. Lipid Res., 1994,... [Pg.317]

Thorne, and D. Langin, Comparison of hormone-sensitive lipase activity in visceral and subcutaneous human adipose tissue, J. Clin. Endocrinol. Metab., 1997,... [Pg.317]

J. Langfort, T. Ploug, J. Ihlemann, C. Holm, and H. Galbo, Stimulation of hormone-sensitive lipase activity by contractions in rat skeletal muscle, Biochem. J., loot), 351, 207-214. [Pg.320]

J.J. Berger and R.J. Barnard, Effect of diet on fat cell size and hormone-sensitive lipase activity, J. Appl. Physiol., 1990, 87, 227-232. [Pg.320]

P. Belfrage, and E. Degerman, Regulation of hormone-sensitive lipase activity in adipose tissue, Methods Enzymol.,... [Pg.331]

The hypertriglyceridemia of Type II diabetes, unlike that which is found with Type I diabetes, is not due to excessive adipocyte lipolysis. This is because only a small level of insulin action is required to suppress excessive adipose tissue hormone-sensitive lipase activity. In Type II diabetes, there is insufficient adipose tissue lipoprotein lipase and excessive hepatic triglyceride synthesis. Thus, inefficient VLDL triglyceride catabolism and excessive VLDL triglyceride secretion both contribute to the excess VLDL in Type II diabetes. [Pg.92]

Increased lipid synthesis/inhibi-tion of lipolysis Activation of lipoprotein lipase (LPL)/induc-tion of fatty acid synthase (FAS)/inactivation of hormone sensitive lipase (HSL) Facilitated uptake of fatty acids by LPL-dependent hydrolysis of triacylglycerol from circulating lipoproteins. Increased lipid synthesis through Akt-mediated FAS-expression. Inhibition of lipolysis by preventing cAMP-dependent activation of HSL (insulin-dependent activation of phosphodiesterases )... [Pg.634]

Figure 25-7. Metabolism of adipose tissue. Hormone-sensitive lipase is activated by ACTH, TSH, glucagon, epinephrine, norepinephrine, and vasopressin and inhibited by insulin, prostaglandin E, and nicotinic acid. Details of the formation of glycerol 3-phosphate from intermediates of glycolysis are shown in Figure 24-2. (PPP, pentose phosphate pathway TG, triacylglycerol FFA, free fatty acids VLDL, very low density lipoprotein.)... Figure 25-7. Metabolism of adipose tissue. Hormone-sensitive lipase is activated by ACTH, TSH, glucagon, epinephrine, norepinephrine, and vasopressin and inhibited by insulin, prostaglandin E, and nicotinic acid. Details of the formation of glycerol 3-phosphate from intermediates of glycolysis are shown in Figure 24-2. (PPP, pentose phosphate pathway TG, triacylglycerol FFA, free fatty acids VLDL, very low density lipoprotein.)...
A principal action of insufin in adipose tissue is to inhibit the activity of hormone-sensitive lipase, reducing the release not only of free fatty acids but of glycerol as well. Adipose tissue is much more sensitive to insulin than are many other tissues, which points to adipose tissue as a major site of insufin action in vivo. [Pg.215]

In adipose tissue, the effect of the decrease in insulin and increase in glucagon results in inhibition of lipo-genesis, inactivation of lipoprotein lipase, and activation of hormone-sensitive lipase (Chapter 25). This leads to release of increased amounts of glycerol (a substrate for gluconeogenesis in the liver) and free fatty acids, which are used by skeletal muscle and liver as their preferred metabolic fuels, so sparing glucose. [Pg.234]

A gene (erstEl) encoding a thermostable esterase was isolated from Escherichia coli cells that had been transformed by DNA libraries with metagenomes from environmental samples isolated from thermal habitats. The enzyme belonged to the hormone-sensitive lipase family, could be overexpressed in E. coli, was active between 30 and 95°C, and used 4-nitrophenyl esters with chain lengths of C4-C16 (Rhee et al. 2005). [Pg.75]

The major hormone-sensitive control point for the mobilization of fat and the (f-oxidation pathway is the effect of phosphorylation on the activity of the hormone-sensitive lipase of the adipose tissue. The major direct control point for (f oxidation is the inhibition of carnitine acyl-... [Pg.178]

The regulation of fat metabolism is relatively simple. During fasting, the rising glucagon levels inactivate fatty acid synthesis at the level of acetyl-CoA carboxylase and induce the lipolysis of triglycerides in the adipose tissue by stimulation of a hormone-sensitive lipase. This hormone-sensitive lipase is activated by glucagon and epinephrine (via a cAMP mechanism). This releases fatty acids into the blood. These are transported to the various tissues, where they are used. [Pg.222]

Adipose tissue releases fat by activation of the hormone-sensitive lipase. The glycerol released by adipose tissue can provide some glucose equivalents to the liver. Adipose tissue itself can t use glycerol—it s missing glycerol kinase to make glycerol 3-phosphate. [Pg.230]

In adipose tissue, insulin stimulation suppresses triglyceride hydrolysis (to free fatty acids and glycerol) by activating cAMP phosphodiesterase (cAMP PDE). Cyclic AMP, (3, 5 cAMP), is required to stimulate hormone sensitive lipase (HSL), the enzyme which hydrolyses triglyceride within adipocytes PDE converts active 3, 5 cAMP to inactive 5 AMP thus preventing the stimulation of HSL. The net effect of insulin on lipid metabolism is to promote storage. [Pg.118]

During fasting, the decrease in insulin and the increase in epinephrine activate hormone-sensitive lipase in fat cells, allowing fatty acids to be released into the circulation. [Pg.159]

Figure 7.10 Hormones that regulate the activity of the hormone-sensitive lipase in adipose tissue. Each hormone binds to a receptor on the outside of the plasma membrane and changes the activity of the lipase within the adipocyte, via a messenger molecule (Chapter 12). A hormone - independent lipase is also present with provides a low rate of release of fatty acid when the former is inactive. Figure 7.10 Hormones that regulate the activity of the hormone-sensitive lipase in adipose tissue. Each hormone binds to a receptor on the outside of the plasma membrane and changes the activity of the lipase within the adipocyte, via a messenger molecule (Chapter 12). A hormone - independent lipase is also present with provides a low rate of release of fatty acid when the former is inactive.
Figure 7.14 Regulation of rate of fatty acid oxidation in tissues. Arrows indicate direction of change (i) Changes in the concentrations of various hormones control the activity of hormone-sensitive lipase in adipose tissue (see Figure 7.10). (ii) Changes in the blood level of fatty acid govern the uptake and oxidation of fatty acid, (iii) The activity of the enzyme CPT-I is controlled by changes in the intracellular level of malonyl-CoA, the formation of which is controlled by the hormones insulin and glucagon. Insulin increases malonyl-CoA concentration, glucagon decrease it. Three factors are important TAG-lipase, plasma fatty acid concentration and the intracellular malonyl-CoA concentration. Figure 7.14 Regulation of rate of fatty acid oxidation in tissues. Arrows indicate direction of change (i) Changes in the concentrations of various hormones control the activity of hormone-sensitive lipase in adipose tissue (see Figure 7.10). (ii) Changes in the blood level of fatty acid govern the uptake and oxidation of fatty acid, (iii) The activity of the enzyme CPT-I is controlled by changes in the intracellular level of malonyl-CoA, the formation of which is controlled by the hormones insulin and glucagon. Insulin increases malonyl-CoA concentration, glucagon decrease it. Three factors are important TAG-lipase, plasma fatty acid concentration and the intracellular malonyl-CoA concentration.
In adipose tissue, the increased concentration of cyclic AMP activates the hormone-sensitive lipase to increase the rate of Upolysis and hence fatty acid release from adipose tissue. This increases the plasma level of fatty acids and hence their oxidation by muscle (see Chapter 7). [Pg.262]

The increased levels of catecholamines and glucocorticoids, the increased sympathetic activity and the decreased level of insulin increase the activity of hormone-sensitive lipase in adipose tissue that is responsible for the increased rate of lipolysis. Also important are the proinflammatory cytokines, TNFa, interleukins 1 and 6. The significance of fat as a fuel in trauma explains why the cytokines have a... [Pg.423]

The degradation of fats (lipolysis) is catalyzed in adipocytes by hormone-sensitive lipase [2]—an enzyme that is regulated by various hormones by cAMP-dependent interconversion (see p. 120). The amount of fatty acids released depends on the activity of this lipase in this way, the enzyme regulates the plasma levels of fatty acids. [Pg.162]


See other pages where Hormone-sensitive lipase activation is mentioned: [Pg.765]    [Pg.330]    [Pg.321]    [Pg.491]    [Pg.765]    [Pg.330]    [Pg.321]    [Pg.491]    [Pg.777]    [Pg.160]    [Pg.214]    [Pg.479]    [Pg.164]    [Pg.172]    [Pg.544]    [Pg.305]    [Pg.133]    [Pg.136]    [Pg.137]    [Pg.263]    [Pg.144]    [Pg.266]    [Pg.49]    [Pg.634]    [Pg.634]    [Pg.897]    [Pg.187]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Activation hormone

Active sensitization

Hormonal activity

Hormone-sensitive lipase

Hormones activities

Lipase activity

© 2024 chempedia.info