Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homopolymer stiff

The first materials are generally referred to as propylene random copolymers and are made by introducing small amounts of ethylene (normally 2-5%) into the polymerization reactor. The resulting random copolymers show greatly improved clarity and somewhat improved toughness compared to the homopolymer. Stiffness, however, is reduced. [Pg.65]

Below T polymers are stiff, hard, britde, and glass-like above if the molecular weight is high enough, they are relatively soft, limp, stretchable, and can be somewhat elastic. At even higher temperatures they flow and are tacky. Methods used to determine glass-transition temperatures and the reported values for a large number of polymers may be found in References 7—9. Values for the T of common acrylate homopolymers are found in Table 1. [Pg.162]

Much more information can be obtained by examining the mechanical properties of a viscoelastic material over an extensive temperature range. A convenient nondestmctive method is the measurement of torsional modulus. A number of instmments are available (13—18). More details on use and interpretation of these measurements may be found in references 8 and 19—25. An increase in modulus value means an increase in polymer hardness or stiffness. The various regions of elastic behavior are shown in Figure 1. Curve A of Figure 1 is that of a soft polymer, curve B of a hard polymer. To a close approximation both are transpositions of each other on the temperature scale. A copolymer curve would fall between those of the homopolymers, with the displacement depending on the amount of hard monomer in the copolymer (26—28). [Pg.163]

Polypropylene polymers are typically modified with ethylene to obtain desirable properties for specific applications. Specifically, ethylene—propylene mbbers are introduced as a discrete phase in heterophasic copolymers to improve toughness and low temperature impact resistance (see Elastomers, ETHYLENE-PROPYLENE rubber). This is done by sequential polymerisation of homopolymer polypropylene and ethylene—propylene mbber in a multistage reactor process or by the extmsion compounding of ethylene—propylene mbber with a homopolymer. Addition of high density polyethylene, by polymerisation or compounding, is sometimes used to reduce stress whitening. In all cases, a superior balance of properties is obtained when the sise of the discrete mbber phase is approximately one micrometer. Examples of these polymers and their properties are shown in Table 2. Mineral fillers, such as talc or calcium carbonate, can be added to polypropylene to increase stiffness and high temperature properties, as shown in Table 3. [Pg.409]

Random insertion of ethylene as comonomer and, in some cases, butene as termonomer, enhances clarity and depresses the polymer melting point and stiffness. Propylene—butene copolymers are also available (47). Consequendy, these polymers are used in apphcations where clarity is essential and as a sealant layer in polypropylene films. The impact resistance of these polymers is sligbdy superior to propylene homopolymers, especially at refrigeration temperatures, but still vastiy inferior to that of heterophasic copolymers. Properties of these polymers are shown in Table 4. [Pg.410]

The glass transition temperature of a random copolymer usually falls between those of the corresponding homopolymers since the copolymers will tend to have intermediate chain stiffness and interchain attraction. Where these are the only important factors to be considered a linear relationship between Tg and copolymer composition is both reasonable to postulate and experimentally verifiable. One form of this relationship is given by the equation... [Pg.63]

In general, as the ion content is raised, the modulus or stiffness of the ionomer is increased, as shown by the data in Fig. 2. While the increase is much greater in the elevated temperature range, where the polymer is acting more like a crosslinked rubber, there is still a significant increase in the glassy modulus below Tg. For example, for the PMMA-based ionomer of Fig. 2, the modulus at 30°C is almost 20% above that of the homopolymer for an ionomer having an ion content of 12.4 mol%. For the... [Pg.147]

Relatively small changes in comonomer content can result in significant changes in physical or chemical properties. Polymer resin manufacturers exploit such relationships to control the properties of their products. The composition of a copolymer controls properties such as stiffness, heat distortion temperature, printability, and solvent resistance. For example, polypropylene homopolymer is brittle at temperatures below approximately 0 °C however, when a few percent ethylene is incorporated into the polymer backbone, the embrittlement temperature of the resulting copolymer is reduced by 20 °C or more. [Pg.23]

ISO 458-2 1985 Plastics - Determination of stiffness in torsion of flexible materials -Part 2 Application to plasticized compounds of homopolymers and copolymers of vinyl chloride... [Pg.174]

The general correlations of structure and properties of homopolymers are summarized in Table 2.13. Some experiments which demonstrate the influence of the molecular weight or the structure on selected properties of polymers are described in Examples 3-6 (degree of polymerization of polystyrene and solution viscosity), 3-15, 3-21, 3-31 (stereoregularity of polyisoprene resp. polystyrene), 4-7 and 5-11 (influence of crosslinking) or Sects. 4.1.1 and 4.1.2 (stiffness of the main chain of aliphatic and aromatic polyesters and polyamides). [Pg.149]

Polymerized vinyl chloride as a homopolymer is hard and brittle, making it difficult to work and impractical as a commercial material. In 1926, Waldo Lonsbury Semon (1898—1999) was working for B. F. Goodrich searching for a synthetic rubber that could adhere to metal objects. Semon examined vinyl chloride and found that when polyvinyl chloride powder was mixed in certain solvents, he obtained a stiff gel that could be molded into a plastic material. The material s hardness and pliability depended on the mix of solvent and polyvinyl chloride. Semon... [Pg.295]

Polyoxybenzoate is a stiff chain, lyotropic liquid crystalline material, as was discussed on the basis of its copolymers with ethylene terephthalate (see Sect. 5.1.4). The crystal structure of the homopolymer polyoxybenzoate was shown by Lieser 157) to have a high temperature phase III, described as liquid crystalline. X-ray and electron diffraction data on single crystals suggested that reversible conformational disorder is introduced, i.e. a condis crystal exists. Phase III, which is stable above about 560 K, has hexagonal symmetry and shows an 11 % lower density than the low temperature phases I and II. It is also possible to find sometimes the rotational disorder at low temperature in crystals grown during polymerization (CD-glass). [Pg.47]

Stiffness, as it results from the elastic modulus, the tensile yield strength, and hardness are reduced with respect to that of a homopolymer by about 25%. [Pg.280]

The copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-PHV) produced by A eutrophus has generated more interest than poly-(R)-3-hydroxybutyrate (PHB) homopolymer. Since these bacterial polyesters are biodegradable thermoplastics, their mechanical and physical properties have received much attention. PHB is a relatively stiff and brittle material because of its high crystallinity. However, the physiochemi-cal and mechanical properties of [P(HB-HV)] vary widely and depend on the molar percentage of 3-hydroxyvalerate (HV) in the copolymer (4,5) as shown inTable 1. Propionic acid is converted by a synthetase to propionyl-CoA, and the biosynthetic P-ketothiolase catalyzes the condensation of propionyl-CoA with acetyl-CoA to 3-ketovaleryl-CoA by the acetoacetyl-CoA reductase. The hydroxyvaleryl moiety is finally covalently linked to the polyester by the PHA synthase (6). [Pg.362]


See other pages where Homopolymer stiff is mentioned: [Pg.668]    [Pg.576]    [Pg.668]    [Pg.576]    [Pg.408]    [Pg.409]    [Pg.419]    [Pg.306]    [Pg.302]    [Pg.14]    [Pg.152]    [Pg.87]    [Pg.234]    [Pg.213]    [Pg.257]    [Pg.7]    [Pg.72]    [Pg.148]    [Pg.148]    [Pg.149]    [Pg.238]    [Pg.120]    [Pg.467]    [Pg.302]    [Pg.473]    [Pg.124]    [Pg.306]    [Pg.117]    [Pg.179]    [Pg.142]    [Pg.18]    [Pg.107]    [Pg.84]    [Pg.30]    [Pg.51]    [Pg.61]    [Pg.125]    [Pg.46]    [Pg.618]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Stiff Stiffness

Stiffness

© 2024 chempedia.info