Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homogeneous modifier

Figure 2 Cross-section of an APV Micron LAB 40 high-pressure homogenizer. (Modified from Muller. R. H. Gohla. S. Dingier. A. Schneppe. T/. Large scale production of solid lipid naftoparticles (SLN ) and nanosuspensions (DissoCubes ). in Handbook of Pharmweuticah Controlled Release Technology, (Wise. D., cd.) in jwess). Figure 2 Cross-section of an APV Micron LAB 40 high-pressure homogenizer. (Modified from Muller. R. H. Gohla. S. Dingier. A. Schneppe. T/. Large scale production of solid lipid naftoparticles (SLN ) and nanosuspensions (DissoCubes ). in Handbook of Pharmweuticah Controlled Release Technology, (Wise. D., cd.) in jwess).
Cohen et al. have shown that tungstate administered to pregnant rats inhibits the production of xanthine and sulfite oxidase (molybdenum-dependent enzymes) and high doses may be fatal to the fetus [28]. Accumulation of W is observed in maternal hypophise and ovaries and W added to the ovarian homogenates modifies the activity of adenylate cyclase. [Pg.635]

Homogeneous catalysts. With a homogeneous catalyst, the reaction proceeds entirely in the vapor or liquid phase. The catalyst may modify the reaction mechanism by participation in the reaction but is regenerated in a subsequent step. The catalyst is then free to promote further reaction. An example of such a homogeneous catalytic reaction is the production of acetic anhydride. In the first stage of the process, acetic acid is pyrolyzed to ketene in the gas phase at TOO C ... [Pg.46]

Homogeneous GopolymeriZation. Nearly all acryhc fibers are made from acrylonitrile copolymers containing one or more additional monomers that modify the properties of the fiber. Thus copolymerization kinetics is a key technical area in the acryhc fiber industry. When carried out in a homogeneous solution, the copolymerization of acrylonitrile foUows the normal kinetic rate laws of copolymerization. Comprehensive treatments of this general subject have been pubhshed (35—39). The more specific subject of acrylonitrile copolymerization has been reviewed (40). The general subject of the reactivity of polymer radicals has been treated in depth (41). [Pg.278]

Most catalysts for solution processes are either completely soluble or pseudo-homogeneous all their catalyst components are introduced into the reactor as Hquids but produce soHd catalysts when combined. The early Du Pont process employed a three-component catalyst consisting of titanium tetrachloride, vanadium oxytrichloride, and triisobutjlalurninum (80,81), whereas Dow used a mixture of titanium tetrachloride and triisobutylalurninum modified with ammonia (86,87). Because processes are intrinsically suitable for the use of soluble catalysts, they were the first to accommodate highly active metallocene catalysts. Other suitable catalyst systems include heterogeneous catalysts (such as chromium-based catalysts) as well as supported and unsupported Ziegler catalysts (88—90). [Pg.387]

In the calciaation process, a mixture of corresponding oxides and an optional modifier, eg, molybdic acid, are milled together to achieve a homogenous mixture. The mixture is calciaed at 750—950°C and milled to a desired particle size. Wet milling ia an alkaline medium is recommended to remove any unreacted vanadium salts that ate beheved to degrade the pigmentary properties of bismuth vanadate (39). [Pg.14]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

The low temperature limitation of homogeneous catalysis has been overcome with heterogeneous catalysts such as modified Ziegler-Natta (28) sohd-supported protonic acids (29,30) and metal oxides (31). Temperatures as high as 80°C in toluene can be employed to yield, for example, crystalline... [Pg.516]

Metallacarboranes. These are used in homogeneous catalysis (222), including hydrogenation, hydrosilylation, isomerization, hydrosilanolysis, phase transfer, bum rate modifiers in gun and rocket propellants, neutron capture therapy (254), medical imaging (255), processing of radioactive waste (192), analytical reagents, and as ceramic precursors. [Pg.254]

Infiltration (67) provides a unique means of fabricating ceramic composites. A ceramic compact is partially sintered to produce a porous body that is subsequently infiltrated with a low viscosity ceramic precursor solution. Advanced ceramic matrix composites such as alumina dispersed in zirconia [1314-23-4] Zr02, can be fabricated using this technique. Complete infiltration produces a homogeneous composite partial infiltration produces a surface modified ceramic composite. [Pg.309]

These appHcations are mosdy examples of homogeneous catalysis. Coordination catalysts that are attached to polymers via phosphine, siloxy, or other side chains have also shown promise. The catalytic specificity is often modified by such immobilization. Metal enzymes are, from this point of view, anchored coordination catalysts immobilized by the protein chains. Even multistep syntheses are possible using alternating catalysts along polymer chains. Other polynuclear coordination species, such as the homopoly and heteropoly ions, also have appHcations in reaction catalysis. [Pg.172]

Catalytic processes frequently require more than a single chemical function, and these bifunctional or polyfunctional materials innst be prepared in away to assure effective communication among the various constitnents. For example, naphtha reforming requires both an acidic function for isomerization and alkylation and a hydrogenation function for aromati-zation and saturation. The acidic function is often a promoted porous metal oxide (e.g., alumina) with a noble metal (e.g., platinum) deposited on its surface to provide the hydrogenation sites. To avoid separation problems, it is not unusual to attach homogeneous catalysts and even enzymes to solid surfaces for use in flow reactors. Although this technique works well in some environmental catalytic systems, such attachment sometimes modifies the catalytic specifici-... [Pg.227]

These poly(2-alkyl-2-oxazoline) silane coupling agents were copolycondensed with tetraethoxysilane by acid-catalyst to produce poly(2-alkyl-2-oxazoline)-modified silica gel. The composite gel from 2-ethyl-2-oxazoline was also homogeneous and transparent glass. Poly(2-alkyl-2-oxazoline)-modified silica gels, especially gels based on poly(2-ethyl-2-oxazoline) absorbed water and also organic solvents such as DMF or alcohols as shown in Table 7. This result means that the obtained composite gel shows the amphiphilic adsorption property. [Pg.26]

S.3.3 Electrocatalytic Modified Electrodes Often the desired redox reaction at the bare electrode involves slow electron-transfer kinetics and therefore occurs at an appreciable rate only at potentials substantially higher than its thermodynamic redox potential. Such reactions can be catalyzed by attaching to the surface a suitable electron transfer mediator (45,46). Knowledge of homogeneous solution kinetics is often used to select the surface-bound catalyst. The function of the mediator is to facilitate the charge transfer between the analyte and the electrode. In most cases the mediated reaction sequence (e.g., for a reduction process) can be described by... [Pg.121]

Note that the Kolmogorov power spectrum is unphysical at low frequencies— the variance is infinite at k = 0. In fact the turbulence is only homogeneous within a finite range—the inertial subrange. The modified von Karman spectral model includes effects of finite inner and outer scales. [Pg.5]

If the redox mediator is dissolved in the electrolyte solution together with the substrate it is a homogeneous mediator as opposed to the surface bound species at modified electrodes. Two basic cases of homogeneous mediation have been classified... [Pg.61]

When a small fraction of irreversible mediator side reactions cause a rapid decrease of catalytic activity in the homogeneous case in a modified electrode this would be disastrous since there is no bulk supply of catalyst. Thus, higher turnover numbers are generally required than in the homogeneous case... [Pg.62]

Fewer examples are reported for organic electrode reactions some alkyl halides were catalytically reduced at electrodes coated with tetrakis-p-aminophenylporphy-rin carboxylate ions are oxidized at a triarylamine polymer and Os(bipy)3 in a Nafion film catalytically oxidizes ascorbic acid Frequently, modified electrodes fail to give catalytic currents for catalyst substrate combinations that do work in the homogeneous case even when good permeability of the film is proven... [Pg.67]

Fig. 7-11 Compilation of the most important photochemical processes in the atmosphere, including estimates of flux rates expressed in moles per year between the earth s surface and the atmosphere and within the atmosphere. (Modified with permission from P. J. Crutzen, Atmospheric interactions - homogeneous gas reactions of C, N, and S containing compounds. In B. Bolin and R. Cook (1983). "The Major Biogeochemical Cycles and Their Interactions," pp. 67-112, John Wiley, Chichester.)... Fig. 7-11 Compilation of the most important photochemical processes in the atmosphere, including estimates of flux rates expressed in moles per year between the earth s surface and the atmosphere and within the atmosphere. (Modified with permission from P. J. Crutzen, Atmospheric interactions - homogeneous gas reactions of C, N, and S containing compounds. In B. Bolin and R. Cook (1983). "The Major Biogeochemical Cycles and Their Interactions," pp. 67-112, John Wiley, Chichester.)...

See other pages where Homogeneous modifier is mentioned: [Pg.420]    [Pg.611]    [Pg.883]    [Pg.89]    [Pg.91]    [Pg.404]    [Pg.128]    [Pg.420]    [Pg.611]    [Pg.883]    [Pg.89]    [Pg.91]    [Pg.404]    [Pg.128]    [Pg.726]    [Pg.756]    [Pg.1509]    [Pg.2816]    [Pg.253]    [Pg.387]    [Pg.426]    [Pg.160]    [Pg.122]    [Pg.274]    [Pg.152]    [Pg.342]    [Pg.1695]    [Pg.76]    [Pg.348]    [Pg.74]    [Pg.100]    [Pg.401]    [Pg.14]    [Pg.427]    [Pg.24]    [Pg.290]    [Pg.59]    [Pg.71]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



© 2024 chempedia.info