Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ascorbic acid catalytic oxidation

The ready oxidation of ascorbic acid will catalyze chemical changes in a number of other substances. Thus, unsaturated fatty acids in lecithins and tissues are catalytically oxidized in the presence of ascorbic acid to a substance producing color with thiobarbiturate (B21). The product of the ascorbic acid-catalyzed oxidation is malonaldehyde, which can also inhibit L-gulonolactone oxidase, the enzyme forming ascorbic acid (Cl). It has been suggested that this enzyme inhibition may occur in vivo in animals deficient in vitamin E, a compound believed to have antioxidant actions which would prevent the ascorbic acid-catalyzed lipid oxidation from giving rise to malonaldehyde. It is quite probable that the active intermediate in the formation of malonaldehyde is the monodehydroascorbate radical which initiates the lipid oxidation. [Pg.133]

In acidic solution, the degradation results in the formation of furfural, furfuryl alcohol, 2-furoic acid, 3-hydroxyfurfural, furoin, 2-methyl-3,8-dihydroxychroman, ethylglyoxal, and several condensation products (36). Many metals, especially copper, cataly2e the oxidation of L-ascorbic acid. Oxalic acid and copper form a chelate complex which prevents the ascorbic acid-copper-complex formation and therefore oxalic acid inhibits effectively the oxidation of L-ascorbic acid. L-Ascorbic acid can also be stabilized with metaphosphoric acid, amino acids, 8-hydroxyquinoline, glycols, sugars, and trichloracetic acid (38). Another catalytic reaction which accounts for loss of L-ascorbic acid occurs with enzymes, eg, L-ascorbic acid oxidase, a copper protein-containing enzyme. [Pg.13]

Most current industrial vitamin C production is based on the efficient second synthesis developed by Reichstein and Grbssner in 1934 (15). Various attempts to develop a superior, more economical L-ascorbic acid process have been reported since 1934. These approaches, which have met with htde success, ate summarized in Crawford s comprehensive review (46). Currently, all chemical syntheses of vitamin C involve modifications of the Reichstein and Grbssner approach (Fig. 5). In the first step, D-glucose (4) is catalytically (Ni-catalyst) hydrogenated to D-sorbitol (20). Oxidation to L-sotbose (21) occurs microhiologicaRy with The isolated L-sotbose is reacted with acetone and sulfuric acid to yield 2,3 4,6 diacetone-L-sorbose,... [Pg.14]

On the other hand, some PCSs lave demonstrated an effect which could be named photoinhibition of the catalytic oxidation process . Thus, it can be seen from Fig. 22 that poly(propionitrile) catalyzing the ascorbic acid oxidation in darkness manifests suppessed catalytic activity on exposure to light. [Pg.35]

An example of such a catalytic EC process is the oxidation of dopamine in the presence of ascorbic acid (4). The dopamine quinone formed in the redox step is reduced back to dopamine by the ascorbate ion. The peak ratio for such a catalytic reaction is always unity. [Pg.35]

Polypyrrole shows catalytic activity for the oxidation of ascorbic acid,221,222 catechols,221 and the quinone-hydroquinone couple 223 Polyaniline is active for the quinone-hydroquinone and Fe3+/Fe2+ couples,224,225 oxidation of hydrazine226 and formic acid,227 and reduction of nitric acid228 Poly(p-phenylene) is active for the oxidation of reduced nicotinamide adenine dinucleotide (NADH), catechol, ascorbic acid, acetaminophen, and p-aminophenol.229 Poly(3-methylthiophene) catalyzes the electrochemistry of a large number of neurotransmitters.230... [Pg.588]

Due to its electronic conductivity, polypyrrole can be grown to considerable thickness. It also constitutes, by itself, as a film on platinum or gold, a new type of electrode surface that exhibits catalytic activity in the electrochemical oxidation of ascorbic acid and dopamine in the reversible redox reactions of hydroquinones and the reduction of molecular oxygen iV-substituted pyrroles are excellent... [Pg.57]

Fewer examples are reported for organic electrode reactions some alkyl halides were catalytically reduced at electrodes coated with tetrakis-p-aminophenylporphy-rin carboxylate ions are oxidized at a triarylamine polymer and Os(bipy)3 in a Nafion film catalytically oxidizes ascorbic acid Frequently, modified electrodes fail to give catalytic currents for catalyst substrate combinations that do work in the homogeneous case even when good permeability of the film is proven... [Pg.67]

Identical kinetics are found for the uranyl ion-catalysed aerobic oxidation of ascorbic acid and a similar mechanism has been put forward These results and others afford a sequence of catalytic activity for the aerobic oxidation of ascorbic acid ... [Pg.433]

Indeed, given an improperly designed or understood system, a blocking agent, like ascorbic acid, could be catalytic toward nitrosamine formation. For example, if the source of nitrosatlng agent is nitrite ion and the susceptible amine is in the lipid phase, conceivably ascorbic acid could cause the rapid reduction of nitrite ion to nitric oxide which could migrate to the lipid phase. Subsequent oxidation of NO to NO in the lipid phase could cause nitrosation. [Pg.200]

A typical result for DPV In Fig. 4a shows the presence of two redox couples with peak potentials of 0.25 V and 0.19 V ( lOmV). Similar results have also been obtained with SWV. The relative Intensities of the two peaks vary from sample to sample but are always present with activated electrodes. The similarities between the potentials found for the surface species and for the oxidation of ascorbic acid suggest that an ec catalytic mechanism may be operative. The surface coverage of the o-qulnone Is estimated to be the order of 10 mol cm . It Is currently not possible to control the surface concentration of the o-qulnone-llke species or the oxygen content of the GCE surface. [Pg.587]

Polymer-supported catalysts often have lower activities than the soluble catalysts because of the intraparticle diffusion resistance. In this case the immobilization of the complexes on colloidal polymers can increase the catalytic activity. Catalysts bound to polymer latexes were used in oxidation reactions, such as the Cu-catalyzed oxidation of ascorbic acid,12 the Co-catalyzed oxidation of tetralin,13 and the CoPc-catalyzed oxidation of butylphenol14 and thiols.1516 Mn(III)-porphyrin bound to colloidal anion exchange resin was... [Pg.248]

The electrochemical response of analytes at the CNT-modified electrodes is influenced by the surfactants which are used as dispersants. CNT-modified electrodes using cationic surfactant CTAB as a dispersant showed an improved catalytic effect for negatively charged small molecular analytes, such as potassium ferricyanide and ascorbic acid, whereas anionic surfactants such as SDS showed a better catalytic activity for a positively charged analyte such as dopamine. This effect, which is ascribed mainly to the electrostatic interactions, is also observed for the electrochemical response of a negatively charged macromolecule such as DNA on the CNT (surfactant)-modified electrodes (see Fig. 15.12). An oxidation peak current near +1.0 V was observed only at the CNT/CTAB-modified electrode in the DNA solution (curve (ii) in Fig. 15.12a). The differential pulse voltammetry of DNA at the CNT/CTAB-modified electrode also showed a sharp peak current, which is due to the oxidation of the adenine residue in DNA (curve (ii) in Fig. 15.12b). The different effects of surfactants for CNTs to promote the electron transfer of DNA are in agreement with the electrostatic interactions... [Pg.497]

Y.H. Wu and S.S. Hu, Direct electron transfer of ferritin in dihexadecylphosphate on an Au film electrode and its catalytic oxidation toward ascorbic acid. Anal. Chim. Acta 527, 37-43 (2004). [Pg.603]

The kinetic results reported by Jameson and Blackburn (11,12) for the copper catalyzed autoxidation of ascorbic acid are substantially different from those of Taqui Khan and Martell (6). The former could not reproduce the spontaneous oxidation in the absence of added catalysts when they used extremely pure reagents. These results imply that ascorbic acid is inert toward oxidation by dioxygen and earlier reports on spontaneous oxidation are artifacts due to catalytic impurities. In support of these considerations, it is worthwhile noting that trace amounts of transition metal ions, in particular Cu(II), may cause irreproducibilities in experimental work with ascorbic acid (13). While this problem can be eliminated by masking the metal ion(s), the masking agent needs to be selected carefully since it could become involved in side reactions in a given system. [Pg.403]

In alkaline solution (pH 11), the complex is present as a p-oxo dimer and ascorbic acid is fully deprotonated. In the absence of oxygen, kinetic traces show the reduction of Fe(III) to Fe(II) with a reaction time on the order of an hour at [H2A] =5xlO-3M. The product [Fen(TPPS)] is very sensitive to oxidation and is quickly transformed to Fe(III) when 02 is added. This leads to a specific induction period in the kinetic traces which increases with increasing [02]. The net result of the induction period is the catalytic two-electron autoxidation of ascorbic acid in accordance with the following kinetic model (23) ... [Pg.409]

Berkessel and Sklorz screened a variety of potential co-ligands for the Mn-tmtacn/H202 catalyzed epoxidation reaction and found that ascorbic acid was the most efficient one. With this activator the authors could oxidize the terminal olefins 1-octene and methyl acrylate with full conversion and yields of 83% and 97%, respectively, employing less than 0.1% of the metal complex (Scheme 86). Furthermore, with E- and Z-l-deuterio-1-octene as substrates, it was shown that the oxygen transfer proceeded stereoselectively with almost complete retention of configuration (94 2%). Besides the epoxidation, also the oxidation of alcohols to carbonyl compounds could be catalyzed by this catalytic system (see also Section in.C). [Pg.447]

Kabanov et al.116 studied the oxidation of ascorbic acid by the Cu(II) complexes of poly(4-vinylpyridine) partially alkylated by bromoacetic acid. It was considered from kinetic and thermodynamic data that the higher catalytic activity of the polymer-Cu complex was caused by binding of the substrate to the catalytic site, represented as 48. [Pg.61]

Experimental observations indicate that the oxidation of cobalt (II) to cobalt (III) and the formation of ethylenediamine from N-hydroxyethylethylene-diamine occur simultaneously. This is quite the opposite to what is usually assumed in other instances of transition metal catalysis of organic reactions—for example, the catalytic effect of manganese in the oxidation of oxalic acid (7, 8), of iron in the oxidation of cysteine to cystine (22) and of thioglycolic acid to dithioglycolic acid (5, 23), of copper in the oxidation of pyrocatechol to quinone and in the oxidation of ascorbic acid (29, 30), and of cobalt in the oxidation of aldehydes and unsaturated hydrocarbons (4). In all these reactions the oxidation of the organic molecule occurs by the abstraction of an electron by the oxidized form of the metal ion. [Pg.191]

Folate is a relatively unstable nutrient processing and storage conditions that promote oxidation are of particular concern since some of the forms of folate found in foods are easily oxidized. The reduced forms of folate (dihydro- and tetrahydrofolate) are oxidized to p-aminobenzoylglutamic acid and pterin-6-carboxylic acid, with a concomitant loss in vitamin activity. 5-Methyl-H4 folate can also be oxidized. Antioxidants (particularly ascorbic acid in the context of milk) can protect folate against destruction. The rate of the oxidative degradation of folate in foods depends on the derivative present and the food itself, particularly its pH, buffering capacity and concentration of catalytic trace elements and antioxidants. [Pg.205]

The catalytic action of CDTA complexes of Fe(III), Ni(II), Cu(II), Cr(in), and Mn(II) on the oxidation of L-ascorbic acid with tris(oxalato)cobaltate has been investigated. The rate is proportional to the concentration of the complex. Fe(III)-CDTA is the best catalyst for the reaction.76... [Pg.100]


See other pages where Ascorbic acid catalytic oxidation is mentioned: [Pg.160]    [Pg.160]    [Pg.184]    [Pg.371]    [Pg.450]    [Pg.309]    [Pg.14]    [Pg.386]    [Pg.865]    [Pg.450]    [Pg.827]    [Pg.499]    [Pg.405]    [Pg.360]    [Pg.18]    [Pg.331]    [Pg.449]    [Pg.119]    [Pg.354]    [Pg.449]    [Pg.667]    [Pg.209]    [Pg.450]    [Pg.249]    [Pg.580]    [Pg.1060]    [Pg.63]    [Pg.63]    [Pg.265]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Ascorbate oxidation

Ascorbic acid oxidation

Ascorbic oxidation

Oxidation ascorbic acid-ascorbate

© 2024 chempedia.info