Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High-conversion bulk

Russell GT, Napper DH, Gilbert RG. Initiator efficiencies in high conversion bulk polymerizations. Macromolecules 1988 21 2141-2148. [Pg.380]

Bulk and solution polymerizations are more or less self-explanatory, since they operate under the conditions we have assumed throughout most of this chapter. A bulk polymerization may be conducted with as few as two components monomer and initiator. Production polymerization reactions are carried out to high conversions which produces several consequences we have mentioned previously ... [Pg.396]

Bulk Polymerization. This is the method of choice for the manufacture of poly(methyl methacrylate) sheets, rods, and tubes, and molding and extmsion compounds. In methyl methacrylate bulk polymerization, an auto acceleration is observed beginning at 20—50% conversion. At this point, there is also a corresponding increase in the molecular weight of the polymer formed. This acceleration, which continues up to high conversion, is known as the Trommsdorff effect, and is attributed to the increase in viscosity of the mixture to such an extent that the diffusion rate, and therefore the termination reaction of the growing radicals, is reduced. This reduced termination rate ultimately results in a polymerization rate that is limited only by the diffusion rate of the monomer. Detailed kinetic data on the bulk polymerization of methyl methacrylate can be found in Reference 42. [Pg.265]

Bead Polymerization Bulk reaction proceeds in independent droplets of 10 to 1,000 [Lm diameter suspended in water or other medium and insulated from each other by some colloid. A typical suspending agent is polyvinyl alcohol dissolved in water. The polymerization can be done to high conversion. Temperature control is easy because of the moderating thermal effect of the water and its low viscosity. The suspensions sometimes are unstable and agitation may be critical. Only batch reaciors appear to be in industrial use polyvinyl acetate in methanol, copolymers of acrylates and methacrylates, polyacrylonitrile in aqueous ZnCh solution, and others. Bead polymerization of styrene takes 8 to 12 h. [Pg.2102]

The importance of the cage reaction increases according to the viscosity of the reaction medium. This contributes to a decrease in initiator efficiency with conversion. 15 1 155 Stickler and Dumont156 determined the initiator efficiency during bulk MMA polymerization at high conversions ca 80%) to be in the range 0.1-0.2 depending on the polymerization temperature. The main initiator-derived byproduct was phenyl benzoate. [Pg.84]

Transfer to initiator can be a major complication in polymerizations initiated by diacyl peroxides. The importance of the process typically increases with monomer conversion and the consequent increase in the [initiator] [monomer] ratio.9 105160 162 In BPO initiated S polymerization, transfer to initiator may be lire major chain termination mechanism. For bulk S polymerization with 0.1 M BPO at 60 °C up to 75% of chains are terminated by transfer to initiator or primary radical termination (<75% conversion).7 A further consequence of the high incidence of chain transfer is that high conversion PS formed with BPO initiator tends to have a much narrower molecular weight distribution than that prepared with other initiators (e.g. AIBN) under similar conditions. [Pg.85]

One final point should be made. The observation of significant solvent effects on kp in homopolymerization and on reactivity ratios in copolymerization (Section 8.3.1) calls into question the methods for reactivity ratio measurement which rely on evaluation of the polymer composition for various monomer feed ratios (Section 7.3.2). If solvent effects arc significant, it would seem to follow that reactivity ratios in bulk copolymerization should be a function of the feed composition.138 Moreover, since the reaction medium alters with conversion, the reactivity ratios may also vary with conversion. Thus the two most common sources of data used in reactivity ratio determination (i.e. low conversion composition measurements and composition conversion measurements) are potentially flawed. A corollary of this statement also provides one explanation for any failure of reactivity ratios to predict copolymer composition at high conversion. The effect of solvents on radical copolymerization remains an area in need of further research. [Pg.361]

Another transition appeared at about 130 °C on the rescanning after rapid cooling of the molten sample. It seems to be a glass transition point. The polyamide prepared in bulk at 70 °C also melted sharply at 250—260 °C. On the other hand, the crosslinked polymer, which was prepared in bulk at 100 °C in a high conversion, has nothing but a broad endothermic curve up to near 300 °C as shown in Fig. 9. [Pg.77]

In this manuscript we review the principles of bulk and solution polymerization with particular emphasis on high conversion (high polymer concentrations) rate of polymerization and molecular weight development. [Pg.43]

In the literature there is only one serious attempt to develop a detailed mechanistic model of free radical polymerization at high conversions (l. > ) This model after Cardenas and 0 Driscoll is discussed in some detail pointing out its important limitations. The present authors then describe the development of a semi-empirical model based on the free volume theory and show that this model adequately accounts for chain entanglements and glassy-state transition in bulk and solution polymerization of methyl methacrylate over wide ranges of temperature and solvent concentration. [Pg.43]

The second large-scale process was the batch mass suspension process. Monsanto did the pioneer work on this (41). In this process, prepolymerization is carried out in bulk and main polymerization in suspension the latter is taken to conversions of over 99%. In contrast to the continuous mass process, peroxide starters are used in order to achieve a high conversion at tolerable reaction times. Figure 3 shows a basic flow diagram of such a plant. A detailed discussion of advantages and disadvantages of the two processes can be found in R. Bishop s monograph published in 1971 (42), and it is continued in a paper by Simon and Chappelear in 1979 (43). It was a decisive factor for the economic success of impact polystyrene that these processes had been completely developed and mastered in theory and practice. [Pg.271]

The bulk polymerization effects the special needs to remove the heat of reactions, and moreover, high conversions cannot be reached because the viscosity of the polymer increases drastically with conversion. In order to avoid a high viscosity of the end product before discharging, the mass polymerization is carried out in solution. Ethylbenzene is a common solvent. [Pg.301]

The production of a,m-diesters from fatty esters can be realized via their SM as already explained, but it can also be performed by CM with methyl acrylate. The bulk CM of several unsaturated fatty acid methyl esters containing double bonds in different positions with methyl acrylate was studied by Rybak and Meier (Scheme 6) [43], C4 and C5 displayed very good activities with high conversions and CM selectivities. Among them, C5 showed the best performance for both methyl oleate (97% conversion, 92% selectivity, with 0.2 mol%) and methyl 10-undecenoate (99% conversion, 99% selectivity, with 0.1 mol%). The same conditions were successfully applied to methyl erucate and methyl petroselinate. The reaction conditions were further optimized, also considering the effect of 1,4-benzoquinone as additive for the reduction of double-bond isomerization [39], The CM of methyl 10-undecenoate and methyl acrylate worked with full conversions and high selectivity if five- to tenfold excess of methyl acrylate is used. Furthermore, using a 1 1 ratio between both reactants led, after optimization of the reaction... [Pg.14]


See other pages where High-conversion bulk is mentioned: [Pg.240]    [Pg.80]    [Pg.81]    [Pg.65]    [Pg.822]    [Pg.7922]    [Pg.209]    [Pg.240]    [Pg.80]    [Pg.81]    [Pg.65]    [Pg.822]    [Pg.7922]    [Pg.209]    [Pg.362]    [Pg.121]    [Pg.195]    [Pg.501]    [Pg.78]    [Pg.244]    [Pg.63]    [Pg.66]    [Pg.275]    [Pg.494]    [Pg.165]    [Pg.178]    [Pg.176]    [Pg.13]    [Pg.530]    [Pg.350]    [Pg.548]    [Pg.275]    [Pg.364]    [Pg.59]    [Pg.51]    [Pg.128]    [Pg.201]    [Pg.1686]    [Pg.210]    [Pg.138]    [Pg.218]    [Pg.121]    [Pg.418]    [Pg.149]   
See also in sourсe #XX -- [ Pg.65 , Pg.66 ]




SEARCH



High-Conversion Bulk Polymerizations

© 2024 chempedia.info